

Quick Reference Guide

Deposit and Surface Analysis Test Kit

Product #: DSA-25 / DSA-100

NOTE: Please refer to Test Kit Instructions during first product use and for additional details including legal statements.

Step 1 - UltraCheck™ 1 Calibration

Perform one UltraCheck 1 calibration per day or per each set of samples analyzed.

NOTE: If RLU_{ATP1} ≤ 5,000 using a PhotonMaster or Lumitester C-110, rehydrate a new bottle of Luminase for maximum sensitivity.

OR

Step 2 - Sample Preparation → Select one of the following options:

Option A - SURFACE SWAB

Option B: MEASURED DEPOSIT

Option C: BIOFILM COLLECTOR

Step 3 – Total ATP (tATPTM) Analysis \rightarrow Then perform the following steps:

3.1 - INCUBATION

Allow time for complete extraction.

3.2 - DILUTION

Dilute out interferences.

3.3 - ASSAY

Measure ATP concentration.

NOTE: If RLU_{tATP} ≤ 10 using a PhotonMaster or Lumitester C-110, you are below the low- detection limit.

NOTE: If RLU_{tATP} ≤ 50 using a PhotonMaster or Lumitester C-110, consider accounting for background (RLUbg). See Test Kit Instructions for guidance.

Calculations \rightarrow **Carry out calculations that correspond to the selected preparation method:**

A - Surface Swab (Default $A_{sample} = 25 \text{cm}^2$):

$$ATP\left(pg\ ATP/cm^2\right) = \frac{RLU_{tATP}}{RLU_{ATP1}} \times \frac{50,000\left(pg\ ATP\right)}{A_{Sample}\left(cm^2\right)}$$

$$tATP\left(\frac{ME}{cm^2}\right) = tATP\left(\frac{pg\ ATP}{cm^2}\right) \times \frac{1\ ME}{0.001\ pg\ ATP} \\ tATP\left(\frac{ME}{g}\right) = tATP\left(\frac{pg\ ATP}{g}\right) \times \frac{1\ ME}{0.001\ pg\ ATP}$$

B - Measured Deposit (Default m_{sample} = 1g):

$$tATP\left(pg\ ATP/cm^2\right) \ = \ \frac{RLU_{tATP}}{RLU_{ATP1}} \ \times \ \frac{50,000\left(pg\ ATP\right)}{A_{Sample}\left(cm^2\right)} \quad \text{OR} \qquad tATP\left(pg\ ATP/g\right) \ = \ \frac{RLU_{tATP}}{RLU_{ATP1}} \ \times \ \frac{50,000\left(pg\ ATP\right)}{m_{Sample}\left(g\right)} \quad \text{OR}$$

$$tATP\left(\frac{ME}{g}\right) = tATP\left(\frac{pg\ ATP}{g}\right) \times \frac{1\ ME}{0.001\ pg\ ATP}$$

C - Biofilm Collector:

$$tATP\left(pg\ ATP\ /\ device\right) = rac{RLU_{IATP}}{RLU_{ATP1}} imes rac{50,000\left(pg\ ATP
ight)}{1\ device}$$

$$tATP\left(\frac{ME}{device}\right) = cATP\left(\frac{pg\ ATP}{device}\right) \times \frac{1\ ME}{0.001\ pg\ ATP}$$

NOTE: 1 ME (Microbial Equivalent) assumes 0.001 pg (1fg) ATP per cell

Interpretations Guidelines

•			
Application	Good Control (pg cATP/mL)	Preventative Action (pg cATP/mL)	Corrective Action (pg cATP/mL)
Surface, Deposits, Coupons*	< 10x	10x to 100x	> 100x

*Guidelines are provided as a ratio of ATP on your surface/deposit/collector to bulk fluid ATP.

NOTE: Interpretation Guidelines provided for general guidance. For best results, establish your own baseline and control levels.