Appendix – Titration: Theory + Practice ## Colour changes of some indicators in pH measurement Methyl orange (helianthine)pH 3.1 to pH 4.4Bromophenol bluepH 3.0 to pH 4.0Bromocresol greenpH 4.0 to pH 5.6Methyl redpH 4.2 to pH 6.2Bromothymol bluepH 6.2 to pH 7.6PhenolphthaleinpH 8.0 to pH 10.0 ### Equations of some titration reactions The syntax below is used to show the relationship between titrant and analyte during the reaction which helps explain the stoichiometry of the reactions. #### Acid/base reactions 1 (Na⁺, OH⁻) + 1 (H⁺, Cl⁻) \rightarrow H₂O + Na⁺ + Cl⁻ Reaction of sodium hydroxide with a monobasic acid 2 (Na⁺, OH⁻) + 1 (SO₄²⁻, 2H⁺) \rightarrow 2 H₂O + 2 Na⁺ + SO₄²⁻ Reaction of sodium hydroxide with a dibasic acid 1 (2 Na⁺, CO $_3$ ²⁻) + 2 (H⁺, Cl⁻) \rightarrow CO $_2$ + H $_2$ O + 2 Na⁺ + 2 Cl⁻ Complete neutralisation of sodium carbonate by hydrochloric acid 1 (2 Na⁺, CO₃²⁻) + 1 (2 H⁺, SO₄²⁻) \rightarrow CO₂ + H₂O + 2 Na⁺ + SO₄²⁻ Complete neutralisation of sodium carbonate by sulphuric acid 1 (Na⁺, OH⁻) + 1 (H⁺, -OOC-C₆H₄-COO-, K⁺) → H₂O + (Na⁺, -OOC-C₆H₄COO-, K⁺) Titration of sodium hydroxide by potassium hydrogen phthalate 2 (Na⁺, OH⁻) + 1 (C₂O₄²⁻, 2 H⁺) \rightarrow 2 H₂O + C₂O₄²⁻ + 2 Na⁺ Titration of sodium hydroxide by oxalic acid 1 (2 Na+, B₄O₇²⁻) + 1 (2 H+, SO₄²⁻) + H₂O \rightarrow 4 HBO₂ + SO₄²⁻ + 2 Na+ Titration of borax by sulphuric acid 1 (2 Na⁺, B₄O₇²⁻) + 2 (H⁺, Cl⁻) + H₂O \rightarrow 4 HBO₂ +2 Cl⁻ + 2 Na⁺ Titration of borax by hydrochloric acid #### Example of phosphoric acid H₃PO₄ This is a triacid with the following pKs: $pK_x=2.1$, $pK_y=7.2$ and $pK_1=12$ In an aqueous medium, only the first two acids can be titrated. The reactions are as follows: $H_3PO_4 + (Na^+, OH^-) \rightarrow (H_2PO_4^-, Na^+) + H_2O_4^-$ (pK₂=2.1) $(H_2PO_4^-, Na^+) + (Na^+, OH^-) \rightarrow (HPO_4^{2-}, 2 Na^+) + H_2O_4^-$ (pK₂=7.2) $(HPO_4^{2-}, 2 Na^+) + (Na^+, OH^-) \rightarrow (PO_4^{3-}, 3 Na^+) + H_2O_4^{3-}$ (pK,=12) #### **Redox reactions** 2 (MnO $_4$ ⁻, K+) + 5 (C $_2$ O $_4$ ⁻, 2 Na+) + 16 H+ \rightarrow 10 CO $_2$ + 2 Mn²⁺ + 8 H $_2$ O + 2 K+ + 10 Na+ Reaction of potassium permanganate and sodium oxalate 1 (MnO₄ , K+) + 5 (Fe²⁺, SO₄ -) + 8 H+ \rightarrow Mn²⁺ + 5 Fe³⁺ + 5 SO₄ -+ 4 H₂O + K+ Reaction of potassium permanganate and iron sulphate $\begin{array}{l} 1~(Cr_2O_7^{~2-}, 2~K^+) + 6~(Fe^{2+}, SO_4^{~2-}) + 14~H^+ \rightarrow 2~Cr^{3+} + 6~Fe^{3+} + \\ 6~SO_4^{~2-} + 2~K^+ + 7~H_2O \end{array}$ Reaction of potassium dichromate and iron sulphate $1 (I_2) + 2 (S_2O_3^{2-}, 2 Na^+) \rightarrow S_4O_6^{2-} + 4 Na^+ + 2 I^-$ Reaction of iodine and sodium thiosulphate 2 (Cu²⁺, SO₄²⁻) + 4 (I⁻, Na⁺) \rightarrow 2 CuI + I₂ + 2 SO₄²⁻ + 4 Na⁺ Reaction of Cu²⁺ and iodide $1 (As_2O_3) + 2 (I_2) + 5 H_2O \rightarrow 4 I^- + 2 AsO_4^{3-} + 10 H^+$ Reaction of iodine and arsenious anhydride #### Complexometric reactions The most common complexing agent used is disodium salt of ethylenediaminetetraacetic acid, or EDTA, usually expressed in its simple form as $\rm H_2Y^2$. As it is often used to complex divalent metals of the $\rm Me^{2+}$ type, the reaction is written as follows: $1 \text{ Me}^{2+} + 1 \text{ H}_{2}\text{Y}^{2-} \rightarrow 1 \text{ (MeY}^{2-}) + 2 \text{ H}^{+}$ #### **Precipitation reactions** The most important use of precipitation reactions is silver nitrate used to titrate halides (Cl^- , Br^- , l^-) and CN^- and SCN^- used to titrate Ag^+ ions. For halides, the reaction is as follows: $1 \text{ Ag}^+ + 1 \text{ X}^- \rightarrow 1 \text{ AgX}$ Some other reactions correspond to the precipitation of usually divalent metal hydroxides: $1 \text{ Me}^{2+} + 2 \text{ OH}^{-} \rightarrow \text{Me}(\text{OH})_{2}$ # Characteristics of some standards We consider a standard to be a commercially available substance of sufficient purity, delivered with a certificate. Such a standard can be weighed to make stable solutions. #### pH standards Oxalic acid (COOH)₂, 2 H₂O MW=126.03 g/mol Potassium hydrogen phthalate KOOC-C₆H₄-COOH MW= 204.22 g/mol Sodium carbonate Na₂CO₃ MW=105.99 g/mol TRIS or THAM H₂N-C(CH₂OH)₃ MW=121.14 g/mol Sodium borate (Borax) $Na_2B_4O_710 H_2O$ MW=381.4 g/mol #### Redox standards Oxalic acid (COOH)₂, 2 H₂O MW=126.03 g/mol Potassium dichromate $K_2Cr_2O_7$ MW=294.19 g/mol Ferrous ammonium sulphate (Mohr's salt) $(NH_4)_2SO_4$, FeSO₄, 6 H₂O MW=392.14 g/mol Arsenious anhydride As₂O₃ MW=169.87 g/mol Potassium iodate KIO₃ MW=213.97 g/mol #### Complexometric standards Disodium salt of EDTA Na₂H₂Y, 2 H₂O MW=372.24 g/mol #### **Precipitation standards** Silver nitrate AgNO₃ MW=169.87 g/mol Potassium chloride KCl MW=74.56 g/mol Sodium chloride NaCl MW=58.44 g/mol