Process Management

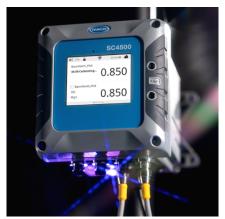
RTC Modules for Wastewater Treatment

PRODUCT RANGE & DESCRIPTION

Be Right[™]

Zone Valve Opening Option: Zone Airflow

Options


Real Time Control Solutions

Hach[®]'s RTC (Real Time Control) solutions are complete, off-the-shelf systems that adjust a treatment process in real time to keep your facility compliant while reducing treatment costs. Controlling your processes has never been so easy.

Standardised RTC modules can be combined and configured to provide a holistic optimisation solution for water treatment processes. This is tailored to the plant-specific requirements, improves compliance with guidelines, and lowers operating costs.

- Ensure regulatory compliance
- Reduce operating costs
- Standardised, modular, and expandable
- Increase treatment capacity

RTC Modules Hosted on SC4500 Controller

- Less cost
- Easier installation
- Easer configuration
- Expanded communication option
- Better documentation
- Graphical display
- No Windows[®] operating system
- Highest security on remote connection

NEW!

New: Trending on local UI

RTC Options

Standardised RTC Solution		Customised RTC Solution
Hosted on Hach SC4500	Hosted on an Industrial PC	Hosted on an Industrial PC
NEW!		
 One standardised RTC module per SC4500 SC4500 user interface Available for Chemical P-elimination Intermittent denitrification Sludge processing 	 Multiple standardised RTC modules Standardised user interface Available for most common waste water treatment processes Extendable by further modules 	 Plant specific solutions based on multiple RTC modules Customised user interface Extendable for plant management task
Most economical for small WWTPs and decentralised application	Most economical solution for medium-sized plants	Solution for plant wide control and specific requirements on large WWTPs

RTC Standardised Combined Product Range

Process	Product Description	Article # (1st/2nd)*
	Closed loop control PO ₄ -P, Output: precipitant flowrate	LXZ515.99.A101 _ (0 / 2)
PO ₄ -P precipitation	RTC module hosted on SC4500 (P-RTC for Open and Closed loop control) Open loop control PO_a -P, Output: precipitant flowrate	LXV525.99 _ G LXZ515.99.A111 _ (0 / 2)
	RTC module hosted on SC4500 (P-RTC for Open and Closed loop control)	LXV525.99_G
RTC-P)	Closed loop control PO ₄ -P considering P_tot / TSS in effluent, Output: precipitant flowrate	LXZ515.99.A121_(0/2)
	Combination open / closed loop control PO ₄ -P, Output: precipitant flowrate	LXZ515.99.A131_(0/2
	Closed loop PO_4 control, Output: precip. flowrate 1 combined with open loop PO_4 control, Output: precip. flowrate 2	LXZ515.99.A131_(1/3
O ₄ -P precipitation RTC-P, SBR version)	Closed loop control PO ₄ , Output: precipitant flowrate for each SBR tank	LXZ515.99.D101_(0/2
	Intermittent aeration control, Output: Aeration on/off	LXZ520.99.C010 _ (1 / 2)
Intermittent	RTC module hosted on SC4500 Intermittent aeration & O ₂ control, Output: Aeration on/off, 1 aeration stage, VSD RTC module hosted on SC4500	LXV525.99_E LXZ520.99.C310_(1 / 2 LXV525.99_F
	Intermittent aeration & O ₂ control, Output: Aeration on/off, 6 aeration stages, 2 VSD	LXZ520.99.C210_(1 / 2
enitrification RTC-N/DN)	Intermittent aeration control incl. external Carbon addition, Output: Aeration on/off, external Carbon dosing	LXZ520.99.C020_(1 / 2
	Intermittent aeration control incl. external Carbon addition, Output: Aeration on/off, 1 aeration stage, VSD external Carbon dosing	LXZ520.99.C320_(1/2
	Intermittent aeration control incl. external Carbon addition, Output: Aeration on/off, 6 aeration stages, 2 VSD external Carbon dosing	LXZ520.99.C220_(1/2
DD (Intermittent	Intermittent aeration control (SBR), Output: Aeration on/off	LXZ520.99.D010_(1/2
BR (Intermittent enitrification)	Intermittent aeration & O ₂ control (SBR), Output: Aeration on/off, 1 aeration stage, VSD	LXZ520.99.D310 _ (1 / 2
RTC-N/DNSBR)	Intermittent aeration (SBR) & O ₂ control, Output: Aeration on/off, 6 aeration stages, 2 VSD	LXZ520.99.D210_(1 / 2
imultaneous	NH ₄ & NO ₃ control, Output: Aeration Intensity (0100%)	LXZ522.99.A010 _ (1 / 2
enitrification RTC-SND)	NH ₄ & NO ₃ control, Output: Aeration Intensity (0100%), Output: 6 stages, 2 VSD	LXZ522.99.B010 _ (1 / 2
(ic-3ND)	Combination open / closed loop NH_4 control, Output: O ₂ setpoint	LXZ519.99.B010 _ (1 / 2
	Combination open / closed loop NH_4 control, Output: O_2 section: Combination open / closed loop NH_4 control, Output: Aeration on/off, 1 aeration stage, VSD	LXZ519.99.B310 _ (1 / 2
itrification, plug flow	Combination open / closed loop NH_4 control, output: Aeration on/on, Taeration stage, VSD Combination open / closed loop NH_4 control, with O ₂ control, Output: O ₂ setpoint, 6 aeration stages, 2 VSD)	LXZ519.99.B310 (172
TC-N)	Combination open / closed loop NH_4 control, with O_2 control, Output: O_2 setpoint, 6 deration stages, 2 vsb) Combination open / closed loop NH_4 control, Output: O_2 setpoints for 4 zones, control of one swing zone	LXZ519.99.D010_(1/2
	Combining open / closed loop NH_4 control on Step Feed reactors, Output: O_2 set points for 3 zones	LXZ519.99.D010 _ (1 / 2
O control (RTC-DO)	Closed loop zone DO control. Output: Aeration intensity	LXZ530.99.C010 _ (1 / 2
lost open valve DO	Closed loop zone DO control. Output: Air valve position, pressure on manifold or overall air flow	LXZ530.99.A010 _ (1 / 2
ontrol (RTC-MOV)		
enitrification	Closed loop control NO ₃ effluent anoxic or post-aeration. Output: Internal recirculation	LXZ521.99.A010 _ (1 / 2
RTC-DN)	Closed loop contol NO_3 effluent denitrification or effluent aeration. Output: Internal recirculation and external carbon Combination open / closed loop NO_3 -N control. Output: External carbon flow	LXZ521.99.B010 (1 / 2
lkalinity (RTC-ALK)	Open closed loop control of Alkalinity, Output: Caustic dosing rate	LXZ521.99.D010 (1 / 2 LXZ514.99.A010 (1 / 2
utrient dosing RTC-C/N/P)	Organic load based nutrient dosing combined with effluent nutrient control. Output: External Nitrogen and Phosphorous dosing rate	LXZ514.99.B010_(1/2
ludge retention time RTC-SRT)	Adjustment of sludge retention time (sludge age) according to seasonal temperature. Output: Surplus activated sludge flow rate	LXZ518.99.A010 _ (1 / 2
hlor-Dechlor CL2-RTC)	Closed loop adjustment of Total Residual Chlorine (TRC) after waste water disinfection. Output: CL ₂ dosing and dosing of de-Cl compound	LXZ531.99.A010 _ (1 / 2
eturn Activated ludge (RTC-RAS)	Adjustment of TSS in RAS flow and SL in Final Sedimentation. Output: Return activated sludge flow rate	LXZ518.99.C010 _ (1 / 2
ludge Thickening RTC-ST)	Open and closed loop control of TSS in thickened sludge and/or filtrate. Output: Polymer flow and/or sludge feed flow RTC module hosted on SC4500 (SP-RTC for Sludge Tickening and Sludge Dewatering)	LXZ517.99.A010 _ (1 / 2 LXV525.99 _ H
ludge dewatering RTC-SD)	Control of TSS in dewatered sludge or centrate. Output: Polymer flow or sludge feed flow RTC module hosted on SC4500 (SP-RTC for Sludge Tickening and Sludge Dewatering)	LXZ516.99.A010_(1/2 LXV525.99_H
issolved air flotation	Control of TSS in flotated sludge and TSS in clear water. Output: Dosing of Coagulant and polymer, dosing of acid and or caustic RTC module hosted on SC4500	LXZ517.99.B010 _ (1 / 2 LXV525.99 _ J
(RTC-DAF)	Control of TSS in flotated sludge and TSS in clear water. Output: Dosing of Coagulant and polymer (2 dosing points), 2 point dosing of acid and or caustic for pH control	LXZ517.99.B020_(1/2
oagulation RTC-COAG)	Combination open/closed loop control effluent turbidity	LXZ532.99.A1010
Pre-Oxidaton RTC-PREOX)	Combination open/closed loop control of Mn and Fe in finished water	LXZ532.99.B1010
ther Applications	Customised control modules or adaptations on request	LYP515.99

*Last digit in article number (to be selected from numbers in brackets) defines if module is a first or second+ module for an RTC solution.

Additional Items

Item	Product Description	Article #
System Integration	Hach sc Bus (Via YAB117 for sc1000)	YAB117
	Hach CLAROS Network Bus communication, HCNB for communication via SC4500	LXZ515.99.B0001
	ModBus TCP/IP (Server and / or Client)	LXZ515.99.B0002
	OPC (Third party SW from Kepware)	LXZ515.99.B0000
Hardware (For RTC modules NOT hosted on SC4500)	DIN Rail IPC with UI and Basic SW (CX5130 Beckhoff)15,6" touch wide screen (CP2716, Beckhoff)18,5" touch wide screen (CP2718, Beckhoff)DIN Rail IPC with UI and Basic SW (SIEMENS IPC427E Microbox)15" touch wide screen (SIEMENS IPC477E)19" touch wide screen (SIEMENS IPC477E)	LXV515.99.0005B LXV515.99.0003B LXV515.99.0004B LXV515.99.0005C LXV515.99.0003C LXV515.99.0004C
Remote	4G SIM Card Router with Power Supply	LZH371
Others	RTC upgrade from std. single to std. combined	LXZ515.99.00001
	Std. combined extension	LXZ515.99.00002
	RTC basic software configuration on existing hardware (Visualisation and data base)	LXZ515.99.00003
	RTC Software adoption / modfication / extension	LXZ515.99.00005

RTC Services

Item	Product Description	Article #
RTC commissioning (Fi	eld Service)	
sc4500	Commissioning Service RTC + Commissioning SC4500	S-XCOMM-RTC4500
std. comb.	Commissioning Service RTC, 1 module , 1-2 ch. (no remote)	S-XCOMM-RTCBAS
	Commissioning Service RTC, add. modules, 1-2 ch. (no remote)	S-XCOMM-RTCBAS2
RTC remote support W	ITH Remote connectivity (to be promoted, no reports)	
std. comb.	Remote Service, 1st channel, 12 month, Parametrierung, One report (Watchdog, weekly check, error monitoring)	S-BASIC-RTC
	Remote Service, additional channel	S-BASIC-RTC-ADD
RTC reports (support c	ontract required)	
std. comb. /sc4500	Ongoing report per channel, 12 month, 12 per year	S-REP-CHA-RTC
	Ongoing report, 12 per year + analysis per channel, 4 per year	S-ANA-CHA-RTC
RTC remote support N	O Remote connectivity (not to be promoted !!)	
sc4500	Analysis of up to 3 data sets from an RTC hosted on an SC4500 (NO CLAROS)	S-OPT-RTC4500
std. comb	Base price, 1st channel for up to 3 data sets from std. comb. RTC (NO REMOTE CONNECTIVITY)	S-OPT-RTC 1
	Price per channel for up to 3 data sets from an RTC hosted on std. comb (NO CLAROS)	S-OPT-RTC-ADD
RTC remote Ad hoc sup	port	
all	1 hours on demand (Ad hoc) support for RTC monitoring system	S-HRS-RTC

PO₄-P Precipitation (RTC-P)

RTC-P Application Area

- Plants with chemical P-removal (measurement point before or after the point of chemical application or any combination of those).
- Plants with varying phosphorus loads in their inflow
- Plants using Al, Fe, and combination products as precipitant

RTC-P Description

Control module for load-dependent precipitant dosage for chemical phosphate elimination.

The RTC-P (Phosphate Removal Real Time Controller) controls the PO_4 -P (soluble phosphorus) concentration based on the continuously measured PO_4 -P concentration and the waste water flow rate. The open loop RTC-P considers the biological phosphorous uptake and true chemical efficiency to ensure the minimum amount of precipitant is added to meet the PO_4 -P setpoint. Closed loop control uses specialised PID loops to ensure very low set points can be used without problematic over reaction common in conventional PID loops. Combination of these advanced controls ensures a direct "fit" to almost any plant configuration and allows new strategies not previously available. Namely, dynamic PO_4 -P set points to automatically react to solids loss events, or automated "policing" dosing to ensure separate dosing systems work in harmony to secure total P and where applicable metal ion compliance.

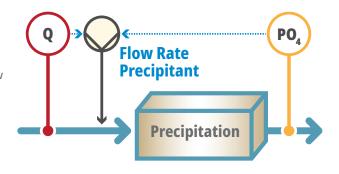
Robust fall back strategies are integral to Hach RTC. If input signals for inflow or ortho phosphate concentration are not available, the system automatically switches to a user defined fall back strategy choice.

Optionally, the RTC-P can also consider the residual ferric concentration measured in the plant effluent in order to also support ferric compliance.

RTC-P Benefit

Improves compliance resilience with existing infrastructure. "Future proofs" plants against stricter regulations.

Avoids overdosing of precipitant resulting in:


- no over spending for precipitant
- no increased production of precipitation sludge which has to be treated and disposed
- reduced alkalinity demand, protecting nitrification

Versions

Closed loop control PO₄-P, Output: precipitant flowrate

1st channel LXZ515.99.A1010 2nd+ channel LXZ515.99.A1012 Hosted on sc4500 LXV525.99_ G ____

In this version, the ortho phosphate concentration is measured after the precipitant is added. A specialised PID algorithm considering flow rates is applied to provide stable control even at ortho phosphorus set-points < 0.1mg/L. The closed loop control approach ensures that the ortho phosphate concentration of the effluent is constantly kept to the desired set point and provides a measurement value to prove effective control.

Precipitant has to be well mixed with the wastewater stream before

the measurement sample is taken. The application of this technique is not specifically limited by hydraulic retention time. As the precipitation chemicals are highly acidic they "equalise" rapidly across a settlement or aeration phase (just as pH adjustment rapidly effects the whole tank volume).

Typical Configuration: Dosing effluent aeration / PO4-P measurement distribution chamber to the final sediment

I/O and Parameter / Channel

RTC-P Output

- Precipitant flow rate
- Controller status signal

RTC-P Input

- PO₄-P concentration
- Flow rate inflow wwtp
- Flow rate return activated sludge and internal recirculation (if available

RTC-P Control Parameter

- Set point for PO₄-P
- wMin/max precipitant flow rate

Open loop control PO₄-P, Output: precipitant flowrate

1st channel LXZ515.99.A1110 2nd+ channel LXZ515.99.A1112 Hosted on sc4500 LXV525.99_ G ____

In this version the ortho phosphate concentration is measured before the precipitant is added. Allowances are then made for chemical efficiency and bio-P uptake. Knowing the concentration of ortho phosphorus in the feed and relating that to the user defined set point ensures chemical efficiency is correctly accounted for. This understanding sets Hach feed forward control apart from simple static stoichiometric approaches common in the industry and is particularly important when low ortho phosphorus set points are required.

Typical Configuration

- Precipitant flow rate

- Controller status signal

- Dosing point: Flow channel toward FST/ $\mathrm{PO}_4\text{-}\mathrm{P}$ measurement: Effluent aeration

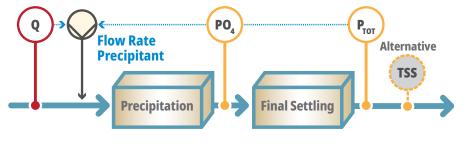
I/O and Parameter / Channel

RTC-P Output

RTC-P Input

- PO₄-P concentration
- Flow rate inflow wwtpFlow rate return activated sludge (if
- available)
- Flow rate internal recirculation (if available)

RTC-P Control Parameter


- Set point PO₄-P open loop control
- Min/max precipitant flow

Versions

Closed loop control PO4-P considering P_tot / TSS in effluent, Output: precipitant flowrate

1st channel LXZ515.99.A1210 2nd+ channel LXZ515.99.A1212

This RTC-P variant automatically reacts to elevated phosphorus associated with suspended solids in the final effluent. Using either a total phosphorus or suspended solids measurement in the final effluent, a user defined trigger level forces a lower ortho phosphorus set point in the primary control system to compensate for phosphorus unaffected by chemical dosing (particulate P). The combination of interlinking control loops

is of particular importance when considering low phosphorus limits, short term events such as pin point floc or solids loss spikes due to flow conditions represent significant P compliance risk with lower phosphorus limits.

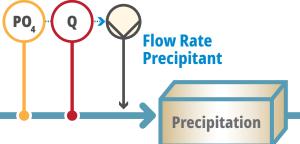
Typical Configuration

- Dosing point: Effluent aeration
- Measuring points: PO₄-P Distribution chamber to the final settling stage. P_Tot / TSS : Effluent wastewater treatment plant

I/O and Parameter / Channel

RTC-P Output

- Precipitant flow rate
- Controller status signal


RTC-P Input

- PO₄-P concentration after dosing point
- P_tot/TSS in plant effluent
- Flow rate inflow wwtp
- Flow rate return activated sludge (if available)Flow rate internal recirculation
- (if available)

RTC-P Control Parameter

- Set point PO₄-P closed loop control
- Set point P_TOT closed loop
- Min/max precipitant flow

Combination open / closed loop control PO4-P, Output: precipitant flowrate

1st channel LXZ515.99.A1310 2nd+ channel LXZ515.99.A1312

This RTC-P variant combines primary open loop control with closed loop "fine trim", informing the precipitant flow rate for one dosing point. This philosophy is particularly useful for sites with oversized assets where immediate reaction to load peaks is especially important.

As an option, the PO_4 -P effluent aeration can be replaced by a measurement of P Tot effluent wwtp.

I/O and Parameter / Channel

RTC-P Output

- Precipitant flow rate for one dosing point
- Controller status signal

RTC-P Input

- PO₄-P concentration before dosing
- PO₄-P in after dosing
- Flow rate inflow wwtp
- Flow rate return activated sludge (if available)
- Flow rate internal recirculation (if available)

RTC-P Control Parameter

- Set point PO₄-P closed loop
- Min/max precipitant flow

Versions

Combination open / closed loop control PO4-P, Output: precipitant flowrate 1st channel LXZ515.99.A1311

2nd+ channel | X7515.99.A1313

This RTC-P variant enables two dose points to be optimised from one ortho phosphate measurement Firstly, closed loop algorithms using a specialised PID control loop allow stable ortho phosphate levels to be passed forward to the secondary dose point. This allows residual phosphorus to be always made available to the biological stage. This residual can then be safely reduced to very low levels using an open loop philosophy on the secondary dose point. Alternatively, if the load conditions overwhelm the primary dosing

PO, Q **Flow Rate Flow Rate** Precipitant **Precipitant** Precipitation **Final Settling**

point, the secondary open loop control can compensate to ensure breakthrough of orthophosphate does not occur. The ability to choose the balance of phosphorus removal across to dosing points opens up further chemical efficiency.

This approach is particularly suited to WwTW's with low total phosphorus consents, challenging chemistry or extreme ortho phosphate load conditions.

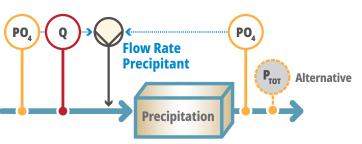
Typical Configuration

- Precipitant dosing 1: Aeration / PO₄-P measurement effluent aeration
- Precipitant dosing 2: Inflow final sedimentation (after PO₄-P measurement)

I/O and Parameter / Channel

RTC-P Output

- Precipitant flow rate for 2 dosing points
- Controller status signal


RTC-P Input

- PO₄-P concentration near/after dosing point
- Flow rate inflow wwtp
- Flow rate return activated sludge (if available)
- Flow rate internal recirculation (if available)

RTC-P Control Parameter

- Set point PO₄-P closed loop control
- Set point PO₄-P open loop control
- Min/max precipitant flow

8

PO₄-P precipitation (RTC-P, SBR version) Closed loop control PO₄, Output: precipitant flowrate 1st channel LXZ515.99.D1010 2nd+ channel LXZ515.99.D1012

The RTC-P SBR Version controls the $\rm PO_4-P$ concentration in an SBR reactor to a desired limit.

Based on the ortho phosphate concentration, the volume of the SBR tank and the applied dosing rate of precipitant the optimal point of time to start the precipitation dosing during the aeration process is calculated. It is ensured that (1) the dosing process starts as late as possible allowing all biological P uptake processes to be finished and (2) that there is sufficient time for mixing and reacting before the sedimentation process starts.

Typical Configuration

- Precipitant dosing and PO₄-P measurement in each SBR reactor

I/O and Parameter / Channel

RTC-P Output

- On/off signal for flow of precipitant
- Controller status signal

RTC-P Input

- PO₄-P concentration in eachSBR Reactor
- SBR phase
- Reactor volume

- Set point PO₄-P for each reactor
- Precipitant flow rate applied

On/Off Dosing

Intermittent Denitrification (RTC-N/DN)

RTC-N/DN Application Area

All plants using an aerated /non-aerated time (including SBR plants) to ensure ammonium and total nitrogen compliance.

RTC-N/DN Description

The N/DN RTC provides the ideal balance of aerated / non-aerated phases for intermittently operated plants or for SBR plants. The time interval for nitrification and denitrification phases is based on real time measurements of NH_4 -N and NO_3 -N in the aeration tank. Understanding both NH_4 -N and NO_3 -N levels in the treatment basin ensures the correct level of DO for the nitrification stage and prevents nitrate exhaustion causing orthophosphate release during the denitrification state or untreated nitrate harming total nitrogen compliance. Should the WwTW have a specific ammonium and total nitrogen limit, functionality is built in to allow priority to be given to a particular parameter, giving the plant maximum compliance protection and treatment flexibility. Additionally there is an option to include an ortho phosphate feedback control loop. In the event of any biological ortho P release, this step would automatically reinstate the aerated phase to protect total P compliance.

Optionally an additional DO controller compliments the RTC N/DN. This DO controller activates

- in the single DO version a single aeration device equipped with a VSD
- in the 6 stage VSD version up to six aeration devices, two of those optionally equipped with a variable frequency drive (VFD) providing smooth adjustment of aeration intensity, high blower efficiency and protection against excessive switching of duty.

Optionally an adjustment of external carbon dosing during denitrification can be added to control the NO₃-N concentration to a desired level.

Robust fall back strategies are an integral part of Hach RTC control. If input signals for ammonium and nitrate are not available, alternate (user selectable) fall back strategies are automatically activated to protect compliance.

RTC-N/DN Benefit

- Effectively increases treatment capacity compared to fixed timeframe control or methods based on measuring reductive conditions.
- Much lower total N consents can be met with existing assets.
- Sludge settlement characteristics improved as high aeration rates are not used in the absence of NH₄-N/COD load.
- Maximum performance on "nitrate harvesting" to drive low total nitrogen.
- Optimum energy usage (typical savings of circa 20%), providing air only when required and maximising the available nitrate benefit
- Maximum alkalinity recovery to protect the nitrification rate and maximise available treatment without additional chemical treatment.

O₂ Set Point

On/Off

NH.

NO:

Intermittent Aeration

- Protects against off gassing of nitrogen in final tanks or SBR generating solids loss issues.
- Additional phosphorus compliance protection.

Versions

Intermittent aeration control, Output: Aeration on/off 1st channel LXZ520.99.C0101 2nd+ channel LXZ520.99.C0102 Hosted on sc4500 LXV525.99_ E _____ 1st channel LXZ520.99.D0101 (SBR) 2nd+ channel LXZ520.99.D0102 (SBR) 1st channel LXZ520.99.C0201 (Ext. C) 2nd+ channel LXZ520.99.C0202 (Ext. C)

I/O and Parameter / Channel

RTC-N/DN Output

- Activation signal for aeration
- DO set-point
- Controller status signal
- Option: External Carbon dosing rate

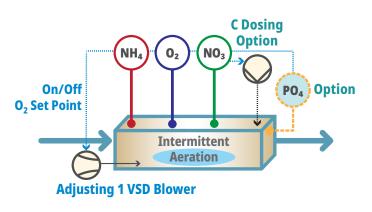
RTC-N/DN Input

- NH_4 -N and NO_3 -N
- SBR Version: Activation signal (filling)
- Option: Flow rate wwtp

RTC-N/DN Control Parameter

C Dosing

Option


PO₄

Option

- Target value $\rm NH_4\text{-}N$ & $\rm NO_3\text{-}N\text{-}N$
- Weighting NH_4 -N & NO_3 -N-N
- Maximum NH₄-N (stop deni)
- Min/max DO concentration

Intermittent aeration & O₂ control, Output: Aeration on/off, 1 aeration stage, VSD 1st channel LXZ520.99.C3101 2nd+ channel LXZ520.99.C3102 Hosted on sc4500 LXV525.99_F____ 1st channel LXZ520.99.D3101 (SBR) 2nd+ channel LXZ520.99.D3102 (SBR) 1st channel LXZ520.99.C3201 (Ext. C) 2nd+ channel LXZ520.99.C3202 (Ext. C)

I/O and Parameter / Channel

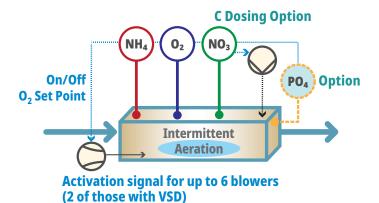
RTC-N/DN Output

- Activation signal for aeration
- DO set-point
- Blower frequency [0 ...100%]
- Controller status signal

RTC-N/DN Input

- NH₄-N and NO₃-N
- SBR Version: Activation signal (filling)
- DO concentration
- Option: Flow rate wwtp, PO_4 -P

RTC-N/DN Control Parameter


- Target value NH₄-N & NO₃-N-N
- Weighting NH_4 -N & NO_3 -N-N
- Maximum NH₄-N (stop deni)
- Min/max DO concentration
- Parameter for DO PID control (closed-loop)

Versions

Intermittent aeration & O2 control, Output: Aeration on/off, 6 aeration stages, 2 VSD 1st channel LXZ520.99.C2101 2nd+ channel LXZ520.99.C2102 1st channel LXZ520.99.D2101 (SBR) 2nd+ channel LXZ520.99.D2102 (SBR)

Intermittent aeration control incl. external Carbon addition, Output: Aeration on/off, 6 aeration stages, 2 VSD external Carbon dosing

1st channel LXZ520.99.C2201 Ext. C 2nd+ channel LXZ520.99.C2202 Ext. C

I/O and Parameter / Channel

RTC-N/DN Output

- Activation signal for aeration
- DO set-point per channel
- Blower stage [1...6]
- Blower frequency [0 ...100%]
- Controller status signal

RTC-N/DN Input

- NH_4 -N and NO_3 -N
- SBR Version: Activation signal (filling)
- DO concentration for each lane
- Option: Flow rate wwtp

Main Control Parameter

- Target value NH₄-N & NO₃-N-N
- Weighting NH₄-N & NO₃-N-N
- Maximum NH₄-N (stop deni)
- Min/max DO concentration
- Parameter for DO PID control (closed-loop)

Simultaneous Denitrification (RTC-SND)

RTC-SND Application Area

Typically, carousel mixed (not plug flow) Activated sludge systems with aerated and non-aerated zones within treatment basin. All plants with simultaneous nitrification/denitrification controlling aerated volume.

RTC-SND Description

Carousel flow ASP's often suffer from the problem of where to place the DO probe. The RTC-SND control system removes the problem entirely. Direct measurement for NH_4 -N and NO_3 -N in the treatment basin allows the control to safely step away from DO set points, instead relying on aeration intensity as a means of controlling aeration and anoxic volume within the tank. Measurement of NO_3 -N allows safe minimum aeration to drive NO_3 -N consumption as an oxygen source without the risk of re-solubilisation of ortho phosphate. Measurement of ammonium allows a clear understanding of aeration intensity requirement and ensures the discharge levels meets the user defined set points. More than this the user can decide which parameter takes priority for treatment, so if the site has a particularly challenging ammonium permit limit for example, higher priority can be given to this.

Optionally 6 digital and 2 analog signals are provided to provide specific control to the aerators / aeration zones in the aeration tank, based on the calculated RTC-SND calculated output.

Additionally, this control can be linked with RTC-SRT. Sludge age can be particularly difficult to control well on these plants as it depends on aerated volume which can be highly variable (compared to plug flow ASP's). RTC-SRT for this type of plant automatically estimates aerated volume to provide a high-quality sludge wastage rate using measured DO within the tank.

Further value can be obtained from this measurement to ensure a minimum DO threshold is maintained. If this falls below or exceeds adjustable limits, the aeration intensity signal is increased/decreased, and aerators are activated/deactivated ensuring the DO concentration is between the limits.

If input signals for NH₄-N, NO₃-Nor DO are not available the system automatically switches to fallback strategies.

RTC-SDN Benefit

- Improves settlement characteristics of MLSS due to reliable maintenance of anoxic zones providing unfavorable conditions for filamentous bacteria.
- Opens the opportunity to achieve much lower total nitrogen levels than conventional control can deliver.
- Significant savings on aeration energy due applying only the air that is required and unlocking the nitrate value present from effective denitrification (typical 15%-35% compared to fixed DO aeration methods)
- Improved acid capacity/alkalinity recovery due to enhanced denitrification
- Minimised denitrification/off gassing in final clarification tank
- · Constant validated proof control maintaining user specified set points

Versions

NH₄-N & NO₃-N control, Output: Aerated volume (0...100%) 1st channel LXZ522.99.A0101 2nd+ channel LXZ522.99.A0102

I/O and Parameter / Channel

RTC-SND Output

- Aeration intensity [0...100%]
- Controller status signal

RTC-SND Input

- NH_4 -N and NO_3 -N
- DO concentration
- Option: Flow rate wwtp

NH₄

NO

Aeratio

02

Aeration Intensity

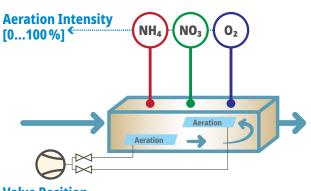
[0...100%] <

RTC-SND Control Parameter

- Target value NH₄-N & NO₃-N-N
- Weighting factor NH_4 -N & NO_3 -N-N
- Min/max DO concentration

NH₄-N & NO₃-N control, Output: Aerated volume (0...100%), Output: 6 stages, 2 VSD 1st channel LXZ522.99.B0101 2nd+ channel LXZ522.99.B0102

In this variant of the RTC-SND, in addition to the aeration intensity, signals for controlling several aerator elements are also generated. The order in which these aerator elements are activated can be configured in the RTC-SND.


I/O and Parameter / Channel

RTC-SND Output

- Aeration intensity [0...100%]
- Blower / valve stage [1...6]
- Blower frequency [0 ...100 %]
- Controller status signal

RTC-SND Input

- NH₄-N and NO₃-N concentration
- DO concentration
- Option: Flow rate wwtp

Valve Position Can control up to 6 valves

RTC-SND Control Parameter

- Target value NH₄-N & NO₃-N-N
- Weighting factor NH₄-N & NO₃-N-N
- Min/max DO concentration

Nitrification, Plug Flow (RTC-N)

RTC-N Application Area

- Plants with plug flow nitrification basins
- Step feed plants (cascade denitrification)

RTC-N Description

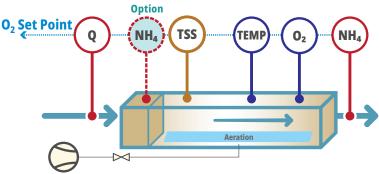
The RTC-N control software calculates the required DO concentration in the aeration basins to achieve a user defined NH₄-N set point concentration in the aeration effluent. To do this (amongst other factors), it accounts for the NH₄-N load, but also for temperature, hydraulic retention time, amount of nitrifying bacteria in the MLSS and actual discharged ammonium concentration in the aeration effluent. More than this it provides ideal dissolved oxygen levels for each of the ASP aerated zones as the ammonium load travels along the lanes. Concentrating the air to the zones of greatest need both saves energy and maximises the value of the available process air. This has the potential to unlock performance not typically observed on ASP's and provide enhanced compliance security. By combining an accurate open loop dissolved oxygen set point with closed loop fine trim, a much more dynamic DO set point can safely be used to save energy and provide greater treatment capacity.

The RTC-N can be used in conjunction with internal recirculation, external carbon addition, swing zone, and/or sludge retention time (sludge age). The RTC-N can also be used w/o the NH_4 -N inlet measurement. In this version the incominig NH_4 -N load is predicted based on flow and historical data.

Optionally an additional DO controller compliments the RTC-N. This DO controller activates:

- in the single DO version, a single aeration device equipped with a VSD
- in the 6 stage VSD version up to six aeration devices, two of those optionally equipped with a variable frequency drive (VFD) providing smooth adjustment of aeration intensity, high blower efficiency and protection against excessive switching of duty.

If input signals for NH₄-N, NO₃-Nor TSS are not available the system automatically switches to fallback strategies.


RTC-N Benefits

- Ensure compliance on NH₄-N due to load based O2 set point adjustment
- Improved denitrification and compliance on N_TOT due to load based aeration (less O₂ recirculated)
- Energy savings: 15%-30% due to lower DO concentration in aeration (compared to fixed O₂ control on 1,5 mg/L...2,5 mg/L)
- DO recovery due to improved denitrification.
- Focused air supply to areas of highest requirement (RTC-N4Z)
- Improved denitrification capacity due to adjusted volume for nitrification (RTC-N4Z)
- Improved sludge settlement qualities through DO levels matching organic load and well maintained anoxic zones

Versions

Combination open / closed loop NH₄-N control, Output: O₂ setpoint

1st channel LXZ519.99.B0101 2nd+ channel LXZ519.99.B0102

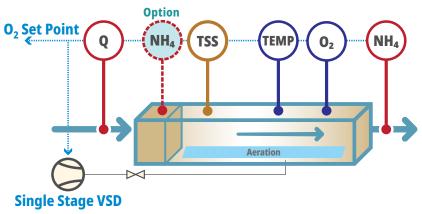
I/O and Parameter / Channel

RTC-N Output

- DO set-point
- Controller status signal

RTC-N Input

- NH₄-N inlet and effluent
- TSS concentration aeration
- DO concentration
- Temperature (from DO probe)
- Flow rates: inflow, internal
- recirculation; surplus activated sludge


RTC-N Control Parameter

- Parameter for NH₄-N PID control
- Min/max DO, max. rate of change

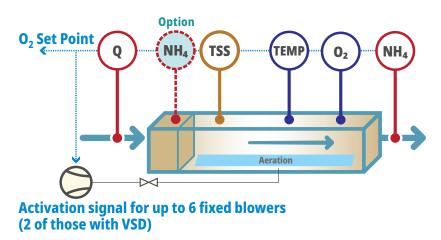
Combination open / closed loop NH₄-N control, Output: Aeration on/off, 1 aeration stage, VSD 1st channel LXZ519.99.B3101

2nd+ channel LXZ519.99.B3102

I/O and Parameter / Channel

RTC-N Output

- DO set-point
- Blower frequency [0 ...100%]
- Controller status signal
- RTC-N Input
- NH₄-N inlet and affluent
- TSS concentration aeration
- DO concentration
- Temperature (from DO probe)
- Flow rates: inflow, internal
- recirculation, surplus activated sludge


RTC-N Control Parameter

- NH_4 -N set point effluent aeration
- Parameter for NH₄-NPID control
- Min/max DO, max. rate of change

Versions

Combination open / closed loop NH₄-N control, with O₂ control, Output: O₂ setpoint, 6 aeration stages, 2 VSD) 1st channel LXZ519.99.B2101

2nd+ channel LXZ519.99.B2102

I/O and Parameter / Channel

RTC-N Output

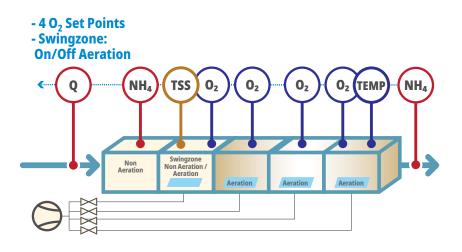
- DO set-point
- Blower stage [1...6]
- Blower frequency [0 ...100%]
- Controller status signal

RTC-N Input

- NH₄-N inlet and effluent
- TSS concentration aeration
- DO concentration in each zone
- Temperature (from DO probe)
- Flow rates: inflow, internal
- recirculation; surplus activated sludge

RTC-N Control Parameter

- NH₄-N set point effluent aeration
- Parameter for NH₄-NPID control
- Min/max DO, max. rate of change



Combination open / closed loop NH₄-N control, Output: O₂ setpoints for 4 zones, control of one swing zone 1st channel LXZ519.99.D0101

2nd+ channel LXZ519.99.D0102

The RTC-N_4Z considers for up to 4 aerated zones the hydraulic retention time of the NH_4 -N load in each aerated zone for set point calculation. This feature allows to provide the air exactly to the zones with the highest air demand.

Based on the inflow load and the current nitrification capacity the RTC-N_4Z calculates if a swing zone has to be aerated and used for nitrification to meet the NH₄-N effluent target or if it can be operated as an anoxic zone for enhanced denitrification in order to minimise the N_TOT effluent concentration and cost for aeration.

I/O and Parameter / Channel

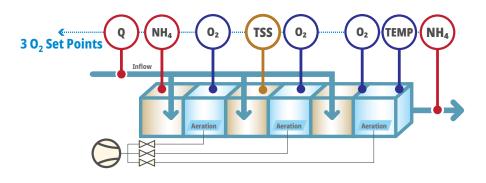
RTC-N Output

- DO set-point for up to 4 zones (one zone facultative aeration)
- Controller status signal

RTC-N Input

- NH₄-N inlet and affluent
- TSS concentration aeration
- DO concentration in each zone
- Flow rates: inflow, internal recirculation, surplus activated sludge

RTC-N Control Parameter


- NH₄-N set point effluent aeration
- Parameter for NH₄-NPID control
- Min/max DO, max. rate of change for each zone

Versions

Combining open / closed loop NH₄-N control on Step Feed reactors, Output: O₂ set points for 3 zones 1st channel LXZ519.99.D1101

2nd+ channel LXZ519.99.D1102

The RTC-N_STEP is designed for step feed resp. cascade denitrification plants. Based on the influent NH_4 -N concentration and the settled sewage inflow rate to each denitrification zone, for each nitrification zone the RTC-N_STEP calculates the DO concentration required to reach the NH_4 -N target concentration is calculated.

I/O and Parameter / Channel

RTC-N Output

- DO set-point for up to 3 zones
- Controller status signal

RTC-N Input

- $\ensuremath{\mathsf{NH}_4}\xspace$ $\ensuremath{\mathsf{NH}_4}\xspac$
- TSS concentration aeration
- DO concentration in each zone
- Flow rates: inflow, internal recirculation; surplus activated sludge

RTC-N Control Parameter

- NH₄-N set point effluent aeration
- Parameter for $\rm NH_4-N$ PID control
- Min/max DO, max rate of change for each zone

Dissolved Oxygen Control (RTC-DO)

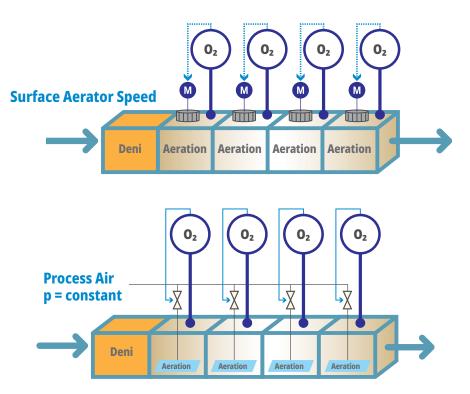
RTC-DO Application Area

Biological Wastewater treatment plants. Independent DO control in multiple zones of an aeration tank. Each aerated zone is equipped with an actuator (e.g. surface aerator or dedicated blower, air control valve with fixed pressure in manifold) and a dedicated DO sensor to control the DO concentration to a desired DO set point.

The RTC-DO can be combined with an RTC-N_4Z zone controller which provides up to 4 DO setpoints based on the current NH_4 -N loading of a lane.

RTC-DO Description

The RTC-DO independently controls up to 16 zones to a desired DO set point. Adjusted variable is the process air flow or surface aerator speed to the corresponding zone. If diffused aeration is applied, air flow measurements and valve positions can be monitored if available.


RTC-DO Benefits

- Minimises aeration energy / drives cost savings
- Increase process treatment capacity in an ASP

Versions

O₂ **control in zones. Output: Surface aerator speed / valve positions LXZ530.99.C0101 (4 Actuators)** 1st channel LXZ530.99.C0101

2nd+ channel LXZ530.99.C0101

I/O and Parameter / Channel

RTC-DO Output

- Up to 16 valve setpoints for zone valve opening degrees
- Controller status sign
- Controller status signal
- **RTC-DO Input**
- Up to 16 zone DO conc.
- Optionally: DO setpoints from RTC-N

RTC-DO Control Parameter - PID-Control Parameter

Most Open Valve DO Control (RTC-MOV)

RTC-MOV Application Area

All wastewater treatment plants with multiple aeration zones. Process air is provided from a manifold. Each aerated zone is equipped with an automatic air valve and a DO sensor to control the DO concentration to a desired DO set point.

The MOV controller can be combined with a RTC-N 4 zone controller which provides up to 4 DO setpoints based on the current NH_4 -N loading of a lane.

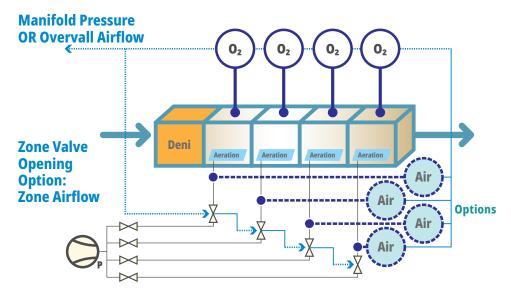
RTC-MOV Description

The RTC-MOV (Most open valve) independently controls in up to 16 zones the DO concentration to a desired DO set point. Adjusted variable is the opening degree of the air valve assigned to the corresponding zone. If the air is provided through a common manifold, the RTC-MOV can provide a set point for the manifold air pressure ensuring that the valve assigned to the volume with highest air demand has got the highest opening degree (Most open valve control). Optionally a set point for the overall air flow can be provided. The pressure on the manifold has to be controlled by the PLC.

In order to react fast to changes in the manifold pressure (caused by load changes or changes in the opening degree of the other air valves) the RTC-MOV can be designed as a cascade controller, considering air flow measurements in each individual zone.

RTC-MOV Benefits

- Efficiently drives process air to zones of greatest need, maximising treatment potential of ASP
- · Minimise aeration energy / drive cost savings
- Increase process treatment capacity in an ASP-duplication. Extend blower system working lifetime


Versions

O₂ control in zones. Output: Air valve positions, pressure on manifold or overalloverall air flow

1st channel LXZ530.99.A0101 (4 zones)

2nd+ channel LXZ530.99.A0102 (Add 4 zones)

If more than four zones will be controlled with the RTC-MOV, a signal exchange between RTC and the PLC via an OPC server is recommended.

I/O and Parameter / Channel

RTC-MOV Output

- Up to 16 valve setpoints for zone valve opening degrees
- Option: Up to 16 set points for zone air flow
- Setpoint for manifold pressure
- Option: Overall airflow set point
- Controller status signal

RTC-MOV Input

- Up to 16 zone DO concentration
- Up to 16 zone air flow signals
- Optionally: DO setpoints from RTC-N

RTC-MOV Control Parameter

- PID-Control Parameter

Denitrification (RTC-DN)

RTC-DN Application Area

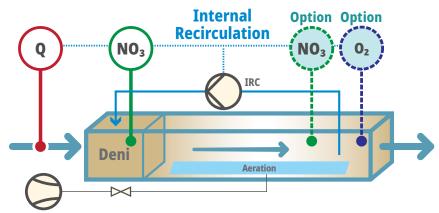
- Pre-denitrification plants with internal recirculation
- Plants dosing external carbon to ensure compliance on N_TOT

RTC-DN Description

The controller optimises both internal recirculation and/or carbon dose flow rates to maximise the available NO_3 -N removal of an ASP. Both approaches are based on measured NO_3 -N concentration typically at the discharge of the denitrification stage. Further treatment enhancements are provided by protection against oxygen carryover from the internal recirculation.

For plug flow ASP's a particularly helpful addition is the swing zone controller (in conjunction with RTC-N). This safely allows the ASP to extend the anoxic zone by "sacrificing" aeration volume (zone 1 of a lane) when ammonium load conditions allow. Especially useful in low flow / load conditions (every night) where minimum air flow requirements often cause oxygen carry over to inhibit denitrification.

If input signals for NO_3 -N-N, DO or flow rate are not available, the system automatically switches to considered fallback strategies.


RTC-DN Benefits

- Maximised leverage of denitrification capacity and improved compliance on N_TOT due to minimised O_2 transfer from nitrification to denitrification
- Reduced O₂ demand (less aeration energy) due to O₂ recovery from denitrification
- Reduced risk breaching COD effluent limit due to overdosing of external carbon
- Minimised cost for product and aeration (if overdosed)
- Improved acid capacity (alkalinity) recovery

Versions

Closed loop control NO₃-N effluent anoxic or aeration. Output: Internal recirculation 1st channel LXZ521.99.A0101

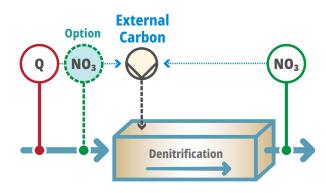
2nd+ channel LXZ521.99.A0101

I/O and Parameter / Channel

RTC-DN_IRC Output

- Set point internal recirculation flow rate [L/s or minutes/hour]
- Controller status signal

RTC-DN_IRC Input


- NO₃-N concentration effluent denitrification or effluent aeration
- Option: DO concentration effluent aeration / IRC draw off point
- Flow rate

RTC-DN_IRC Control Parameter

- Target value for NO₃-N effluent denitrification zone
- Option: Target value for NO₃-N effluent nitrification zone
- Min/max IRC flow rate
- IRC run time for fixed speed pumps or systems with low dynamic range

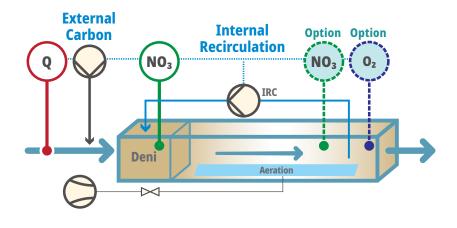
Combination open / closed loop NO₃-N control. Output: External carbon flow 1st channel LXZ521.99.D0101 2nd+ channel LXZ521.99.D0102

I/O and Parameter / Channel

RTC-DN-C Output

- Set point ext. C dosing rate [L/h]
- Controller status signal

RTC-DN-C Input


- NO₃-N concentration effluent denitrification
- Option: NO₃-Ninflow denitrification
- Flow rate (pot. incl. IRC)

RTC-DN-C Control Parameter

- Set point NO₃-N effluent denitrification
- PID control parameter
- Min/max external Carbon flow rate

Versions

Closed loop control NO₃-N effluent denitrification or effluent aeration. Output: Internal recirculation and /or external carbon addition 1st channel LXZ521.99.B0101 2nd+ channel LXZ521.99.B0102

I/O and Parameter / Channel

RTC-DN_IRC Output

- Set point internal recirculation flow rate [L/s or minutes/hour]
- Set point external C dosing rate [L/h]
- Controller status signal

RTC-DN_IRC Input

- NO_3 -N concentration effluent denitrification
- NO_3 -N concentration effluent aeration
- Option: DO concentration NO₃-N concentration effluent aeration

RTC-DN_IRC Control Parameter

- Target value NO₃-N effluent denitrification
- Min/max IRC flow rate
- Min/max external C flow rate
- PID control parameter

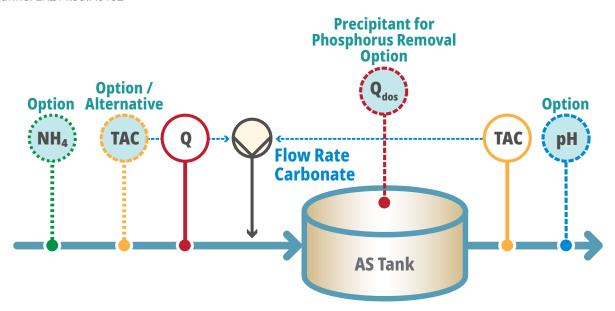
Alkalinity (RTC-ALK)

RTC-ALK Application Area

• Plants dosing lime or chalk to ensure sufficient Alkalinity (carbonate balance) for biological wastewater treatment

RTC-ALK Description

The controller adjusts the Alkalinity in an activated sludge plant to a desired level by adding lime or chalk to the treatment process.


The controller can act as a feedback (preferred) of feed forward controller based on an alkalinity measurement effluent / influent aeration. As an alternative or in combination with open/closed loop control the RTC-ALK can be combined with an RTC-N and/or RTC-P to calculate the amount of lime or chalk to be added in order to compensate the loss of alkalinity caused by addition of precipitant (2,5 mg HCO₃- per mg Fe added) and by nitrification/denitrification (nitrification consumes 8,7 mg HCO₃- per mg N nitrified, denitrification provides back 4,34 mg HCO₃- per mg N denitrified). In order to consider varying Inflow conditions measurements including flow, optional pH, conductivity and/or temperature can be considered to immediately react on changing inflow conditions.

RTC-ALK Benefits

• Avoid acidity in biological treatment increasing the risk of inhibiting nitrification due of the high sensitivity of autotrophic organisms to low pH values and harming coagulation and flocculating processes in sludge sedimentation

Versions

Open closed loop control of Alkalinity, Output: Caustic dosing rate 1st channel LXZ514.99.A0101 2nd+ channel LXZ14.99.A0102

I/O and Parameter / Channel

RTC-ALK Output

- Lime/chalk dosing rate
- Controller status signal

RTC-ALK Input

- Flow rate
- pH, Conductivity, Temp
- Alkalinity (option)
- NH₄-N, NO₃-N (from RTC-N and RTC-DN, precipitant flow

RTC-ALK Control Parameter

- PID settings
- Min/Max dosing rate of Lime/chalk
- Specific dosing rate (kg/m³, mg/L)

20

Nutrient Dosing (RTC-C/N/P)

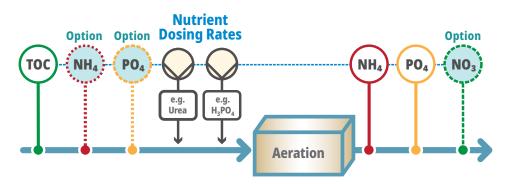
RTC-C/N/P Application Area

- All biological treated waste with an imbalance of Nitrogen and/or Phosphorus with respect to COD/BOD.
- The RTC-C/N/P can be combined with the RTC-SRT to avoid the growth of nitrifiers further enhancing COD removal

RTC-C/N/P Description

The RTC C/N/P maintains ideal nutrient levels within wastewater to ensure COD/BOD treatment is not biologically limited. This is achieved using feed forward control with online TOC measurement allied to feedback control using ammonium and ortho phosphate measurement. Further flexibility allows user defined nutrient ratios to be input for specific process waste streams. Additionally, there is an option to supplement the feed forward algorithm with N and /or P measurements to automatically account for variations in background nutrient levels and TOC values.

In order to avoid unwanted nitrification, nitrate concentration in the effluent can be measured to inform aeration conditions.


If input signals for TOC, NH_4 -N, PO_4 -P -P, NO_3 -N or flow rate are not available, the system automatically switches to considered fallback strategies.

RTC-C/N/P Benefits

- Ensure compliance on COD/BOD, NH_4 -N / total N and PO_4 -P
- Reduced effluent discharge costs
- Improved sludge settlement characteristics
- Avoid nitrification (in conjunction with RTC-SRT)
- Minimised cost on nutrients added.
- Wasteful aeration avoided

Versions

Organic load based nutrient dosing combined with effluent nutrient control. Output: External Nitrogen and Phosphorous dosing rate 1st channel LXZ514.99.B0101 2nd+ channel LXZ514.99.B0102

I/O and Parameter / Channel

RTC-C/N/P Output

- Set point dosing rate urea [L/h]
- Set point dosing rate phosphoric acid [L/h]
- Specific nutrient dosing rates (N/TOC and P/TOC)
- Controller status signal

RTC-C/N/P Input

- TOC concentration
- Option: Inflow: NH₄-N and PO₄-P
- Effluent: NH₄-N, NO₃-N, PO₄-P
- Inflow
- Flow rate Urea
- Flow rate Phosphoric acid

RTC-C/N/P Control Parameter

- Specific urea dosing rates N/TOC
- Specific phosphoric acid dosing rates P/TOC
- Set point PO₄-P, NH₄-N and NO₃-N effluent aeration
- Min / Max dosing rate
- Min / Max specific dosing rate
- PID Control parameter

Sludge Retention Time (RTC-SRT)

RTC-SRT Application Area

• All biological stages requiring wastage of biology (Activated sludge systems)

RTC-SRT Description

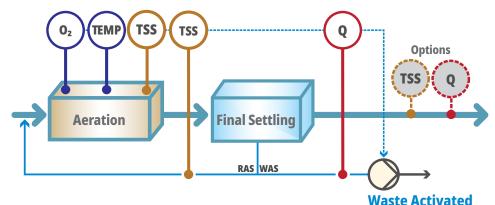
The SRT controller automatically maintains the correct amount and type of biology in the treatment basin. Biological growth and decay rates are determined using measured sewage temperature (typically from DO probe). The aerated treatment volume is taken into account (particularly important with intermittent or carousel ASP's), then the mass of biology to be wasted can accurately be determined. Measurement of solids within the waste-activated sludge (typically RAS solids as surrogate) allows conversion to a waste volume that can then be acted on. An additional solids measurement in the final effluent can be incorporated into the control to account for additional solids lost from the treatment system.

This control can be used to provide ideal conditions for ammonium removal (avoiding high MLSS in summer placing unnecessary pressure on aeration systems, and too low MLSS in winter risking ammonium compliance). Alternatively, a sludge age can be manually entered (e.g. 3.5 days) to inhibit nitrification and direct process air more specifically for COD/BOD treatment – especially useful for sites without ammonium limits.

Additionally, to this the user can specify minimum and maximum MLSS levels in the aeration basin. So, if a plant temporarily suffers poor settlement problems, the mass flux of the final tanks can be calculated and the controller will not allow the MLSS to raise above that point, protecting against sludge blanket loss.

Additional safety factors are built in to protect the sludge volume wasted does not exceed the sludge processing capacity of a facility.

If input signals for TSS or DO are not available, the system automatically switches to considered fallback strategies.


RTC-SRT Benefits

- Ensures compliance on ammonium or COD/BOD
- Provides process stability
- · Prevents excessive air demand on blower system in warmer weather
- Saves on aeration energy (circa 5-10%)
- Improves sludge age calculation accuracy by considering large data sets (reduces human error in this area)

Versions

Adjustment of sludge retention time according to temperature. Output: Surplus activated sludge flow rate 1st channel LXZ518.99.A0101

2nd+ channel LXZ518.99.A0102

I/O and Parameter / Channel

RTC-SRT Output

- Flow rate excess sludge [L/s]
- Controller status signal

- RTC-SRT Input
- TSS concentration activated sludge [g/L]
- TSS concentration surplus activated sludge [g/L]
- DO concentration in up to
- 4 zones [mg/L] - Temperature [°C]
- Excess sludge flow rate [L/s]

RTC-SRT Control Parameter

- Table for SRT target value
- Safety factor for SRT calculation
- Min/Max flow rate for SAS
- Min/max TSS concentration in activated sludge tank

Chlorination-Dechlorination (RTC-C/DC)

RTC-C/DC Application Area

• Treatment plants with Disinfection processes based on Chlorine

RTC-C/DC Description

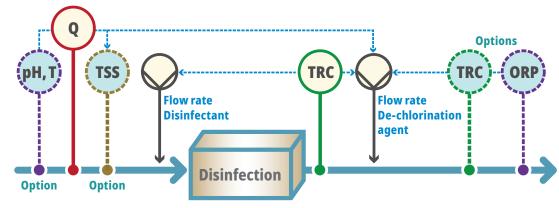
The Hach CLAROS Process Management (CPM) system for Chlorination/Dechlorination (RTC-C/DC) measures chlorine demand in real time and adjusts chemical dosing to achieve the required disinfection to meet effluent chlorine limits.

The RTC-C/DC system calculates the minimum amount of chemical disinfectant required in the contact tank to maintain a userdefined CT (concentration x contact time) value within Total Residual Chlorine (TRC) limits. The RTC-C/DC system also calculates the required amount of dechlorination chemical to achieve effluent compliance. Fallback strategies, safety limits, and conditionbased monitoring are preprogrammed in the system and configured for the specific facility during commissioning.

The system uses both feed forward and feedback loops to manage chlorination and dechlorination. The feed forward chlorination calculation is based on continually maintaining an influent concentration of chlorine that correlates to the chosen CT by adjusting the dosage based on wastewater flow. The feedback calculation modifies the influent chlorine dosage based on the measurement of TRC at the end of the chlorine contact tank which will detect when the chlorine demand has changed.

The feed forward dechlorination calculation is based on flow and the measurement of TRC at the end of the chlorine contact tank. The optional feedback calculation modifies the dechlorination chemical set point based on the measurement of TRC at the end of the dechlorination tank.

Additional Claros Process Management calculations provided within the controller:


- Total Chlorine Demand
- Instantaneous Chlorine Demand
- Chlorine Decay Demand
- By-Product Formation (TTHM & HAA) Estimation
- Estimate of Log Inactivation

RTC-C/DC benefits

- Ensures compliance on TRC limits
- · Optimised chemical usage
- Visibility into disinfection process
- Consistent effluent quality

Versions

1st channel LXZ531.99.A1010 2nd+ channel LXZ531.99.A1012

I/O and Parameter / Channel

RTC-C/DC Output

- Flow rate Chlorine dosing
- Flow rate de-chlorination agent
- Controller status signal

RTC-C/DC Input

- pH, T influent contact chamber
- Total Residual Chlorine (TRC),
- alternative Total Free Chlorine (TFC) - Option: ORP

RTC-C/DC Control Parameter

- Specific dosing rate (mg CL_2/L) - PID Parameter
- Min/Max Chlorine dosing rate

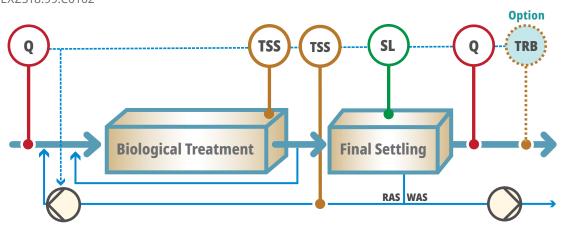
Return Activated Sludge (RTC-RAS)

RTC-RAS Application Area

• All biological stages that require the return of activated sludge from the final settlement tank (activated sludge process)

RTC-RAS Description

The RTC-RAS optimises the return activated sludge effluent. The aim of the optimisation is to ensure that the conditions in the final settling stage meet the prerequisites for sedimentation and thus result in low TSS concentrations in the effluent. To achieve this, the optimum return sludge rate is calculated by comparing the TSS concentration in the aeration tank and in the return activated sludge. Sludge levels and turbidity in the effluent (optional) are taken into account to ensure good effluent quality.


If turbidity values are not available for the effluent, the system can be adjusted to operate without these signals. If no input signals are available for important measurements (TSS in the return, treatment tank), the system automatically switches to selectable fallback strategies.

RTC-RAS Benefits

- Improved final settlement tank performance
- Improved compliance security for solids, COD/BOD & phosphorus
- Reduced energy cost associated with RAS pumping

Versions

Control of the Return Activated Sludge Rate 1st channel LXZ518.99.C0101 2nd+ channel LXZ518.99.C0102

Input and Output Signals/Channel

RTC-RAS Output

- Flow rate of the return activated sludge [L/s]
- Status

RTC-RAS Input

- TSS concentration in the aeration tank [g/L]
- TSS concentration in the return activated sludge [g/L]
- Sludge level in the final settlement tank [m]
- Effluent rate [L/s] or
- Feed flow rate [L/s] optionall
- Optional: TSS or turbidity in the effluent

RTC-RAS Control Parameters

- Target value for TSS in the aeration tank/TSS in the return activated sludge
- Target value for sludge level
- Optional: Target value for TRB effluent
- Limit values for sludge level, TSS effluent
- Min./max. effluent rate
- Optional: Freely selectable target value

Sludge Thickening (RTC-ST)

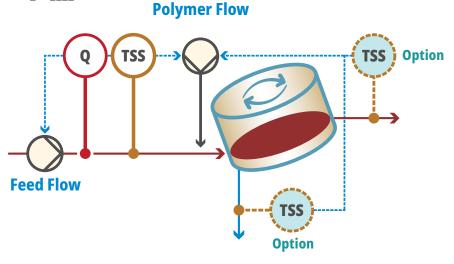
RTC-ST Application Area

- Plants with mechanical sludge thickening devices (belt / drum thickeners etc.)
- Plant with varying TSS concentration in thickener feed flow
- Plants applying fixed polymer dosing rate / periodical adjustment based on visual judgement or lab results / flow proportional dosing
- Plants with low solids capture rate, unstable TSS concentration in filtrate and thickened sludge

RTC-ST Description

The RTC-ST (sludge thickening) controller improves and stabilises thickened sludge concentration or filtrate quality in mechanical sludge thickening. Based on the solids load in the feed flow, either the polymer dosing rate or the feed flow rate is adjusted to a specific polymer dosing rate [g/kg]. This feed forward control can be combined with a feedback control of the TSS in the thickened sludge or in the filtrate to either increase or decrease the specific polymer dosing rate (within a user defined window).

Fixed polymer dosing rate and variable feed sludge flow rate is particularly helpful strategy if an asset experiences solids feed overload.


RTC-ST Benefits

- Increased gas yield from anaerobic digestion due to consistently higher TSS in thickened sludge
- Polymer overdosing avoided. Reduced maintenance work on sludge thickening machines (no belt blending).
- Reduced amount of polymer dosed
- Improved solids capture preventing recycling of solids to head works, impacting aeration efficiency and reducing compliance risk

Versions

Open and closed loop contr. of TSS in thickened sludge and/or filtrate. Output: Polymer flow and/or feed flow 1st channel LXZ517.99.A0101

2nd+ channel LXZ517.99.A0102 Hosted on sc4500 LXV525.99_ H ____

I/O and Parameter / Channel

RTC-ST Output

- Polymer dosing flow rate or feed flow rate
- Controller status signal

RTC-ST Input

- TSS concentration in feed flow
- TSS concentration in thickened sludge / filtrate
- Feed flow dewatering device
- Flow rate polymer dosing

RTC-ST Control Parameter

- Specific dosing rate (kg polymer / t TSS)
- PID Parameter for thickened sludge or filtrate TSS control

Sludge Dewatering (RTC-SD)

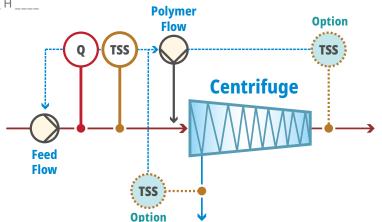
RTC-SD Application Area

- Plants with sludge dewatering devices (centrifuges)
- Plants with changing TSS concentration in feed flow to the centrifuges
- Plants applying fixed polymer dosing rates based on visual judgement / lab results / flow paced

RTC-SD Description

The RTC-SD (sludge dewatering) controller adjusts polymer dosing rate or feed flow rate in mechanical sludge dewatering. Based on the current solids feed load (TSS concentration and flow rate), either the polymer dosing rate or the sludge feed flow rate is controlled ensuring an adjustable specific polymer dosing rate [g Poly/kg Dry Solids]. This feed forward control can be combined with a feedback control of the TSS in the centrate or dewatered sludge.

If input signals inflow or TSS concentration are not available the system automatically switches to fallback strategies.


RTC-SD Benefits

- Savings on polymer (typical 10-15% compared to fixed dosing rate)
- More consistent dewatered product
- Increased TSS concentration in dewatered sludge and subsequently decreased cost for sludge disposal
- Decreased TSS concentration in centrate and reduce issues on process water returns
- Reduce issues of foaming due to polymer overdose. Avoids need for expensive anti-foam chemicals.
- Improved solids capture preventing recycling of solids to head works, impacting aeration efficiency and reducing compliance risk

Versions

Control of TSS in dewatered sludge or centrate: Output: Polymer flow or feed flow

1st channel LXZ516.99.A0101 2nd+ channel LXZ516.99.A0102 Hosted on sc4500 LXV525.99_ H ____

I/O and Parameter / Channel

RTC-SD Output

- Polymer dosing flow rate or feed flow rate
- Controller status signal

RTC-SD Input

- TSS concentration in feed flow
- TSS concentration in dewatered sludge / centrate
- Feed flow dewatering device
- Flow rate polymer dosing

RTC-SD Control Parameter

- Specific dosing rate (kg polymer / t TSS)
- PID Parameter for dewatered sludge or centrate TSS control

Dissolved Air Flotation (RTC-DAF)

RTC-DAF Application Area

- Dissolved Air Flotation processes (DAF) in water treatment
- Plants with changing TSS (TOC) concentration in DAF feed
- Processes with unusable TSS in floated sludge
- Processes with poor solids capture (high solids in clear water)

RTC-DAF Description

This controller maximises the solids capture and clear water quality through balancing chemical addition with plant load conditions. The RTC-DAF provides a specific feed-forward dose rate for coagulant and flocculant and uses feedback trim to automatically account for chemical effectiveness (based on TSS or TOC). The feedback trim alters the specific dosing rates for coagulant and flocculant to ensure user defined quality set points for the discharged liquid & sludge are met.

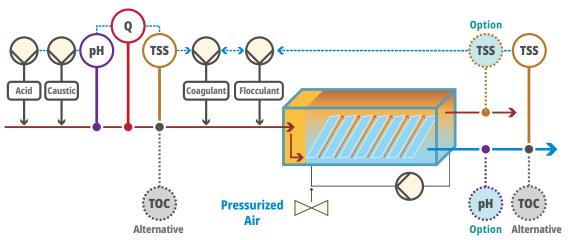
To support coagulation, the pH in the inflow can be automatically adjusted to a user-defined point. If after buffering, the pH-value remains outside a user defined window, dosing of coagulant and flocculant are stopped.

If input signals inflow or TSS (TOC) concentration are not available, the system automatically switches to fall back strategies.

RTC-DAF Benefits

- Ensure Permit compliance, stabilise downstream processes, and reduce effluent costs
- Increase TSS concentration in floated sludge and reduces cost for further sludge treatment
- Improve solids capture respectively decrease TSS concentration in clear water effluent

Versions


Control of TSS in floated sludge and TSS in clear water.

Output: Dosing of Coagulant and polymer, dosing of acid and or caustic 1st channel LXZ517.99.B0101 2nd+ channel LXZ517.53.B0102 Hosted on SC4500 LXV525.99_J ____

Control of TSS in flotated sludge and TSS in clear water.

Output: Dosing of Coagulant and polymer (2 dosing points), 2 point dosing of acid and or caustic for pH control 1st channel LXZ517.99.B0201

2nd+ channel LXZ517.99.B0202

I/O and Parameter / Channel

RTC-DAF Output

- Coag. / floccul. dosing rate
- Caustic / acid flow rate
- Feed flow rate
- Controller status signal

RTC-DAF Input

- TSS concentration in
- Feed flow
- Floated sludge
- Clear water effluent
- Feed flow rate
- Flow rate polymer / coagulant

RTC-DAF Control Parameter

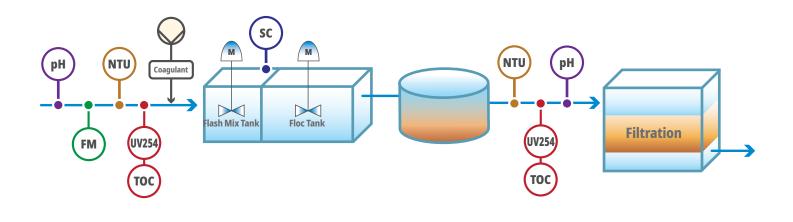
- Specific dosing rates
- (kg polymer / t TSS)
- PID Parameter for floated sludge resp. clear water TSS (TOC) control
- PID parameter for pH control

Source Water Coagulation (RTC-COAG)

RTC-COAG Application Area

Utilises machine learning and a variety of parameter inputs to adjust coagulant dosing in real time, optimising chemical costs and ensuring compliant finished water.

RTC-COAG Description


Calculates coagulant dosing rates in the coagulation/flocculation/sedimentation process using feed forward and feedback control loops. To build the feedforward model, Hach will collect available historical raw and finished water analytical data to develop a machine learning model that can predict the coagulation dosage based on raw water analytical data. Coagulation is a complex process which is influenced by several raw water parameters, therefore using a machine learning model that takes account of several raw water parameters will provide a more robust and optimal dosage calculation. The software will continually retrain the model as the system receives new data to ensure the model is accurate as possible. The feedback trim modifies the specific dosing ratio for coagulant are based on available instrumentation and data available such as streaming current and or prefilter turbidity and organics.

RTC-DAF Benefits

• Optimisation of coagulation/ flocculation water treatment process; achieve savings on coagulant usage; and improve solids and natural organic matter removal.

Versions

LXZ532.99.A1010 (Small) LXZ532.99.A1011 (Medium) LXV532.99.A1012 (Large)

I/O and Parameter / Channel

RTC-COAG Output

- Coagulant concentration
- Coagulant flow rate
- Controller status signal

RTC-COAG Input

- Raw parameters (sensor)
- Raw lab parameters
- Settled turbidity and organics

RTC-COAG Control Parameter

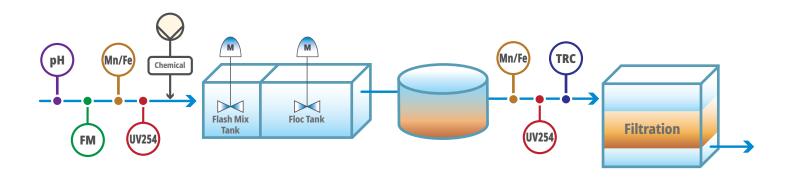
- Settled turbidity setpoint
- PID settings
- Min/Max flow rate of coagulant

Source Water Pre-Oxidation (RTC-PREOX)

RTC-PREOX Application Area

Source water treatment plants that dose oxidants (MnO_4) to oxidise raw Mn, Fe and organics.

RTC-PREOX Description


Utilises a ratio feed forward model and a variety of parameter inputs to adjust oxidant dosing in real time, optimising chemical costs and ensuring compliant finished water. This system improves the Oxidant usage to remove Mn, Fe, and organics from the raw water supply. The RTC-PREOXD calculates Oxidant dosing rates in the pretreatment process using feed forward and feedback control loops. The feed forward loop calculation is based on continuously maintaining a constant ratio of Mn/Fe to Oxidant concentration as well a constant ratio of Organics to Oxidant concentration. The feedback trim then modifies the dosing rates for Oxidant based on the concentration of Oxidant prior to sedimentation and or Mn/Fe measured in the finished water.

RTC-PREOX Benefits

• Optimisation of water treatment process achieve savings on Oxidant; reduce the risk of overdosing Oxidant; and Mn/Fe/ Organic removal optimisation.

Versions

LXZ532.99.B1010 (Small) LXZ532.99.B1011 (Medium) LXV532.99.B1012 (Large)

I/O and Parameter / Channel

RTC-PREOX Output

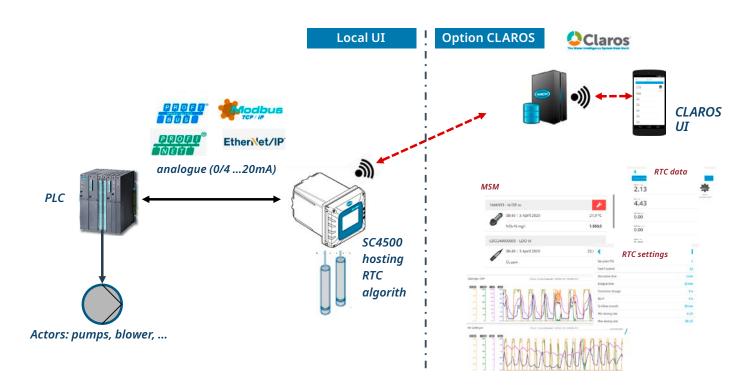
- Oxidant concentration
- Oxidant flow rate
- Controller status signal

RTC-PREOX Input

- Raw Mn, Fe, Organics
- Settled Mn, Fe, Organics
- Oxidant residual

RTC-PREOX Control Parameter

- Mn, Fe, oxidant setpoints
- Oxidant to parameter ratios
- PID settings
- Min/Max flow rate of oxidant


RTC Hosted on SC4500

RTC modules are installed on the SC4500 measurement transmitter. The site PLC communicates with the SC4500 via Profibus, Profinet, Modbus TCP/IP, EtherNet IP or analogue (0/4...20 mA).

SC4500 can be connected to CLAROS for remote operation.

Currently limited to the following modules: RTC-P; RTC-N/DN; RTC-SD; RTC-ST

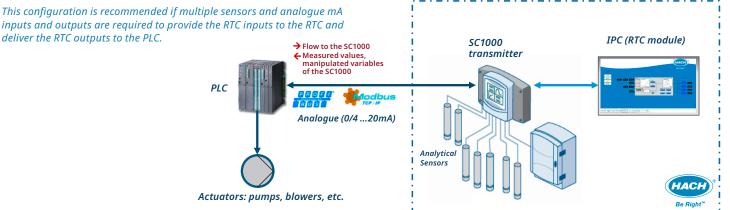
Hardware (To integrate multiple RTCs on a single IPC)

Hardware Touch Panel

Touch panel industrial PC for installation in a control cabinet. Aluminium housing with glass front and one slot for CFast cards, accessible from the outside. Communication to Hach SC4500 controller via Hach CLAROS network bus. Communication to SC1000 controller via RTC communication card. Direct communication to PLC via Modbus TCP/IP or any other protocol Kepware (3rd party SW).

LXV515.99.0003C15" touch wide screen (SIEMENS IPC477E)LXV515.99.0004C19" touch wide screen (SIEMENS IPC477E)LXV515.99.0003B15,6" touch wide screen (CP2716, Beckhoff)LXV515.99.0004B18,5" touch wide screen (CP2718, Beckhoff)

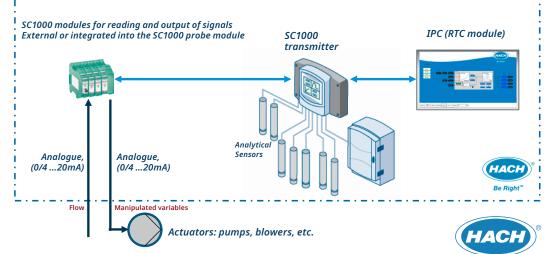
Hardware for DIN Rail Mounting

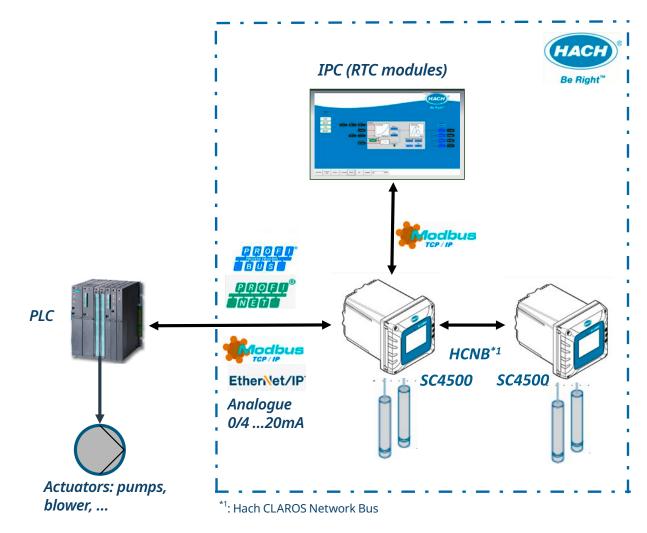

IPC for DIN rail mounting, one slot for CFast cards, accessible from the outside. Communication to Hach SC4500 controller via Hach CLAROS network bus. Communication to SC1000 controller via RTC communication card. Direct communication to PLC via Modbus TCP/IP or any other protocol Kepware (3rd party SW). Operation of the RTC e.g. via TeamViewer, VNC Viewer.

LXV515.99.0005C DIN Rail IPC with UI and Basic SW (SIEMENS IPC427E Microbox) LXV515.99.0005B DIN Rail IPC with UI and Basic SW (CX5130 Beckhoff)

IPC /PLC Integration

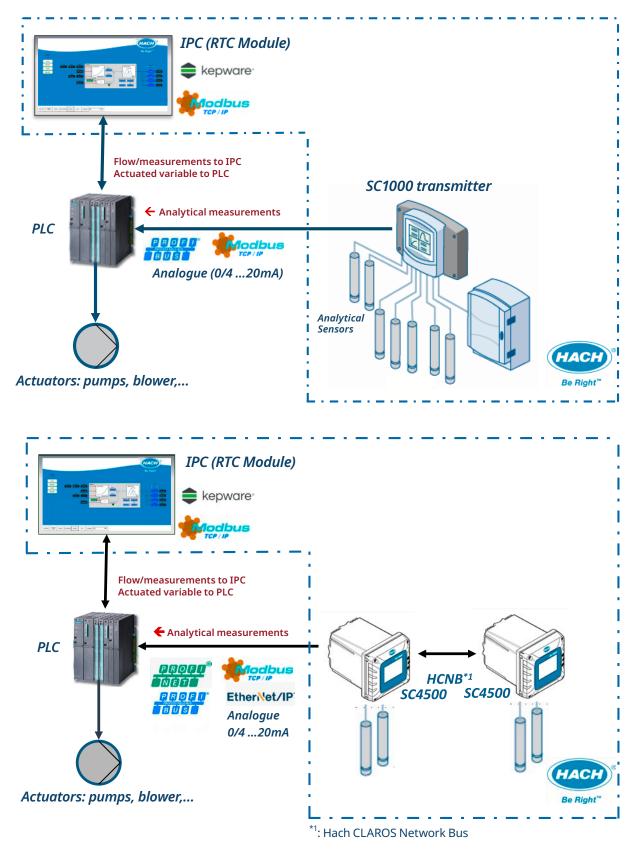
Integration via SC1000


The RTC modules are installed on an industrial PC. The site PLC communicates with the SC1000 via PROFIBUS, MODBUS TCP/IP or analogue (0/4...20 mA). The data exchange between the IPC (on which the RTC modules are installed) and the SC1000 takes place via an internal RTC communication card.


Integration via SC1000. Direct Control of Actuators.

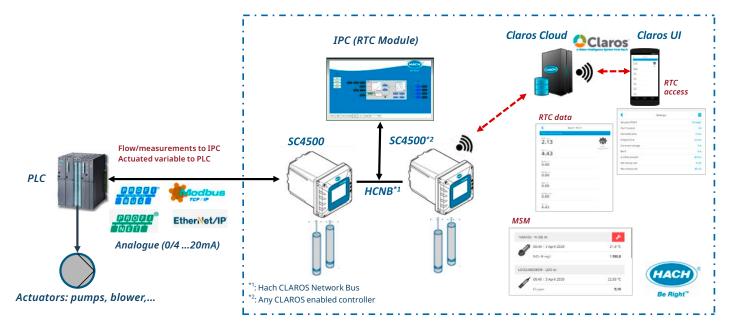
The RTC modules are installed on an industrial PC. Communication with the sensors for flow and with the actuators takes place via the input and output modules that are integrated in the SC1000 probe module or external (figure).

This configuration is recommended if multiple Hach analytical sensors and analogue mA inputs and outputs are required. It allows direct communication between the RTC and site sensors (e.g. flow meters) and site actuators (e.g. dosing pumps).


RTC modules are installed on an industrial PC. The site PLC receives analytical data from SC4500 Modbus, Ethernet IP, Profibus, Profinet or analogue (0/4...20mA). The IPC hosting the RTC modules communicates to SC4500 via Modbus TCP/IP (LXZ515.99.B0002)

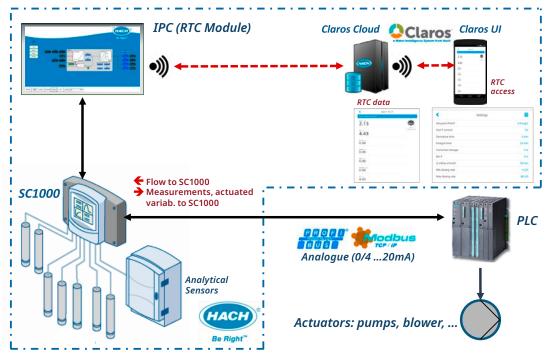
Direct Communication Between IPC and PLC

RTC modules are installed on an industrial PC. The site PLC receives analytical data from SC1000 via Profibus, Modbus TCP/IP or analogue (0/4...20mA) or from SC4500 (lower picture) via Modbus, Ethernet IP, Profibus, Profinet or analogue (0/4...20mA). The IPC hosting the RTC modules communicates to the site PLC, via ModBus TCP (Server) or any other specific PLC communication protocol (via 3rd party SW from Kepware).



Claros Integration

RTC modules are installed on an industrial PC. The site PLC receives analytical data from SC4500 via Profibus, Profinet, Ethernet IP, Modbus TCP/IP or analogue (0/4...20mA). RTC is connected to the SC4500 and to Claros Cloud through HCNB (Hach CLAROS Network Bus).


Currently limited to the following Modules: RTC-P; -N/DN; -N; -SRT; -SD; - ST, -SND, -CNP, -MOV, -DN

RTC modules are installed on an industrial PC. The site PLC communicates with the SC1000 via PROFIBUS, MODBUS TCP/IP or analogue (0/4...20 mA). The data exchange between the IPC (on which the RTC modules are installed) and the SC1000 takes place via an internal RTC communication card.

RTC is connected to Claros for remote operation.

Currently limited to the following Modules: RTC-P; -N/DN; -N; -SRT; -SD; - ST, -SND, -CNP, -MOV, -DN

RTC Yearly Partnership

The Yearly Service Partnership for Real Time Control (RTC) from Hach provides the assurance that you'll receive the full power and benefits from your RTC solution. During the year, Hach technicians will monitor your system and review your data remotely, providing guidance and optimising your RTC to its highest performance and efficiency levels – specifically for your plant and application.*

The Yearly Service Partnership is an essential element of your RTC solution (starting after the completion of its Commissioning and Optimisation period) and offers these benefits:

Hach Service Benefits

- Full value of the RTC with optimal settings enabled specifically for your application
- Peace of mind with the remote data analysis and fast support from Hach's experts to ensure sustainability
- Guidance and reporting on likely settings changes to improve plant efficiency, savings, and compliance
- Increased confidence by having maintenances and repairs in expert hands
- Remote diagnosis for 12 months

Not Included:

- Maintenance on instruments connected to the RTC system**
- Wear and spare parts (charged upon consumption)

Highlights

Basic RTC Partnership

- Active feedback on errors and warnings of the RTC installation and the connected measuring devices
- Fast response time in case of technical defects of the RTC and the connected measurement instruments
- Customer access to the Hach remote service specialist
- Regular backup of RTC settings (no complete system backup)

Advanced RTC Partnership

Includes Basic features, plus:

- Annual complete back up of RTC system data on site during a maintenance visit (cleaning and testing of the RTC components) by a service technician
- Priority on-site response time in the event of breakdown
- Active review and recommendations on possible adjustments and optimisations of the RTC settings
- Software updates with new features (if required)
- Full back up of the system and safe storage
- Monthly RTC status reports

* An internet access and a connection to a SC4500 controller is mandatory for a full-service delivery and benefit.

** Service contracts on instruments connected to the RTC are mandatory.

Eliminate uncertainty. Increase confidence.

Claros[™] the Water Intelligence System from Hach, provides you with a complete picture of your plant. You'll be confident your operation is efficient and effective with proactive instrument insights, data visualisation, and process control optimisation.

See the power of Claros at www.hach.com/claros

