

Flo-Tote 3

08/2017, Edição 1

Manual do Usuário

Especificações	3
Informações gerais	4
Informações de segurança	4
Uso de informações de risco	
Avisos de precaução	
Precauções em espaços confinados	
Visão geral do produto	
Teoria de operação	
Medição da velocidade	
Medição de profundidade	
Cálculos de vazão	
Componentes do produto	7
Instalação	8
Itens para coletar	
Diretrizes de local de site	9
Instalação do cubo do dessecante (FL900)	11
Conectar a um registrador de fluxo	12
Material de instalação do sensor	12
Operação	12
Instale o software	
Manutenção	
Limpe os eletrodos do sensor	
Substituir o dessecante	
Substituição da membrana hidrofóbica	
•	
Solução de problemas	
Apêndice A: criação do perfil de velocidade	16
Seleção do local	
Diretrizes do perfil	
Meça a profundidade da vazão	
Cálculos do perfil de velocidade	
Medição pelo método 0,9 x Vmax	
Método 0,2, 0,4, 0,8	
Método 0,4	
Método 2D	_
Método 2D alternativo	
Calibração automática Auto-Cal	
Apêndice B: cálculos de vazão	21
Cálculo de vazão - canais circulares	
Cálculo da vazão - canais retangulares	
Cálculo da vazão - rios e córregos	
Converta as unidades de vazão	
Peças e acessórios de reposição	28

Especificações

As especificações estão sujeitas a alteração sem aviso prévio.

Especificação	Detalhes		
Dimensões (L x C x P)	131 x 44 x 28 mm (5,16 x 1,73 x 1,10 pol.)		
Carcaça	Poliuretano		
Cabo do sensor	Revestimento de poliuretano. Comprimento padrão: 9 m (30 pés); comprimento máximo: 305 m (1.000 pés) ¹		
Peso	1,1 kg (2,4 lb) com cabo de 9,1 m (30 pés)		
Grau de poluição	3		
Classe de proteção	III		
Categoria de instalação	I		
Temperatura de operação	0 a 45 °C (32 a 113 °F), 0 a 100% de umidade		
Temperatura de armazenamento	–20 a 52° C (–4 a 125° F)		
Alimentação elétrica	10 V, 100 mA fornecido pelo registrador de fluxo		
Medição da velocidade ²	Método: eletromagnético (Lei de Faraday)		
	Faixa: - 1,5 a 6,1 m/s (- 5 a 20 pés/s)		
	Precisão: ± 2% de leitura		
	Estabilidade zero: ± 0,015 m/s (± 0,05 pés/s) em 0 a 3 m/s (0 a 10 pés/s)		
	Resolução: ± 0,0003 m/s (± 0,01 pés/s)		
Medição de profundidade	Método: transdutor de pressão submerso		
	Faixa: padrão 10 mm a 3,5 m (0,4 a 138 pol.). Entre em contato com a fábrica para obter faixas estendidas.		
	Precisão: ± 1% de leitura		
	Estabilidade zero: ± 0,009 m (± 0,03 pés) para 0 a 3 m (0 a 10 pés) Inclui não linearidade, histerese e efeitos de velocidade.		
	Resolução: 2,5 mm (0,1 pol.)		
	Proteção acima da faixa: 2X faixa		
Medição de fluxo	Método: conversão do nível de água e tamanho do tubo para a área do fluido Conversão da leitura de velocidade local para a velocidade média. Multiplicação da área do fluido pela velocidade média para igualar a taxa de fluxo.		
	Precisão da conversão: ± 5,0% de leitura. Assume um coeficiente de calibração da instalação adequado, fluxo do tubo de 10% a 90% completo com um nível maior que 5,08 cm (2 pol.).		
Medição de temperatura	Método: 1 termômetro digital com fio		
	Faixa: - 10 a 85 °C (14 a 185 °F)		
	Precisão: ± 2 °C (± 3,5 °F)		

¹ Mantenha o comprimento dos cabos o mais curto possível para evitar interferências eletromagnéticas.

² Consulte Diretrizes de local de site na página 9 para obter outras informações relacionadas à medição.

Especificação	Detalhes
Cabo do sensor	Material: revestimento de poliuretano
	Comprimento padrão: 9,1 m (30 pés), comprimento máximo: 305 m (1.000 pés)
Controlador compatível	Registrador de fluxo série FL
Garantia	1 ano (EU: 2 anos)

Informações gerais

Em hipótese alguma o fabricante será responsável por danos diretos, indiretos, especiais, incidentais ou consequenciais resultantes de qualquer defeito ou omissão neste manual. O fabricante reserva-se o direito de fazer alterações neste manual e nos produtos aqui descritos a qualquer momento, sem aviso ou obrigação. As edições revisadas podem ser encontradas no site do fabricante.

Informações de segurança

AVISO

O fabricante não é responsável por quaisquer danos devido ao uso ou aplicação incorreta deste produto, incluindo, sem limitação, danos diretos, acidentais ou consequenciais, e se isenta desses danos à extensão total permitida pela lei aplicável. O usuário é unicamente responsável por identificar riscos críticos de aplicação e por instalar os mecanismos apropriados para proteger os processos durante um possível mau funcionamento do equipamento.

Leia todo o manual antes de tirar da embalagem, montar ou operar esse equipamento. Preste atenção a todas as declarações de perigo e cuidado. Caso contrário, o operador poderá sofrer ferimentos graves ou o equipamento poderá ser danificado.

Certifique-se de que a proteção oferecida por este equipamento não seja afetada. Não use nem instale este equipamento de nenhuma outra forma além da especificada neste manual.

Uso de informações de risco

APERIGO

Indica uma situação potencial ou iminentemente perigosa que, se não for evitada, resultará em morte ou lesão grave.

A ADVERTÊNCIA

Indica uma situação potencialmente perigosa que, se não for evitada, pode resultar em morte ou ferimento grave.

ACUIDADO

Indica uma situação potencialmente perigosa que pode resultar em ferimento leve a moderado.

AVISO

Indica uma situação que, se não evitada, pode causar danos ao instrumento. Informações que necessitam de uma ênfase especial.

Avisos de precaução

Leia todas as etiquetas e rótulos fixados no instrumento. Caso não sejam observadas, podem ocorrer lesões pessoais ou danos ao instrumento. Um símbolo no instrumento tem sua referência no manual com uma medida preventiva.

Este é o símbolo de alerta de segurança. Acate todas as mensagens de segurança que seguem este símbolo a fim de evitar lesões potenciais. Se o símbolo estiver no instrumento, consulte o manual de instruções para obter informações sobre a operação ou segurança.

Este símbolo identifica a presenca de dispositivos sensíveis a Descargas eletrostáticas (ESD) e indica que deve-se tomar cuidado para evitar dano ao equipamento.

O equipamento elétrico marcado com este símbolo não pode ser descartado em sistemas de descarte público ou doméstico europeus. Devolva equipamentos antigos ou no final da vida útil para o fabricante para descarte, sem custo adicional para o usuário.

Precauções em espaços confinados

APERIGO

Perigo de explosão. Treinamento em testes pré-entrada, ventilação, procedimentos de entrada. procedimentos de evacuação/resgate e práticas de trabalho de segurança são necessárias antes de entrar em espaços confinados.

As informações a seguir são fornecidas para ajudar os usuários a entenderem os perigos e os riscos associados com a entrada em espaços confinados.

Em 15 de abril de 1993, a decisão final da OSHA sobre o CFR 1910.146, Autorização Requerida para Espacos Confinados, se tornou lei. Este padrão afeta diretamente mais de 250.000 locais industriais nos EUA e foi criado para proteger a saúde e a segurança dos trabalhadores em espaços confinados.

Definição de um espaço confinado:

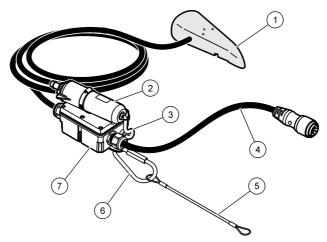
Um espaço confinado é qualquer local ou recinto que apresente (ou tenha potencial imediato para apresentar) uma ou mais das seguintes condições:

- Uma atmosfera com uma concentração de oxigênio menor que 19,5% ou maior que 23,5% e/ou uma concentração de sulfeto de hidrogênio (H₂S) que seja maior que 10 ppm.
- Uma atmosfera que possa ser inflamável ou explosiva devido a gases, vapores, névoas, poeira ou
- Materiais tóxicos que, mediante contato ou inalação, podem causar lesões, danos à saúde ou morte.

Os espaços confinados não são feitos para ocupação humana. Os espaços confinados têm uma entrada restrita e contêm riscos conhecidos ou potenciais. Exemplos de espaços confinados incluem câmaras subterrâneas, chaminés, tanques, subterrâneos de troca e outros locais semelhantes.

Os procedimentos de segurança padrão devem sempre ser obedecidos antes da entrada nos espaços confinados e/ou locais onde possam estar presentes gases perigosos, vapores, névoas, poeiras ou fibras. Antes de entrar em um local confinado, encontre e leia todos os procedimentos relacionados à entrada em um espaço confinado.

Visão geral do produto


O sensor Flo-Tote 3 mede a velocidade e a profundidade dos líquidos condutores em canais abertos usando a tecnologia do sensor eletromagnético. O sensor se conecta ao registrador de fluxo da série FL para criar um sistema de fluxo completo.

O sensor Flo-Tote 3 está disponível com um conector ou fio desencapado. Consulte Figura 1 e Figura 2.

Os recursos do sistema do Flo-Tote 3 incluem:

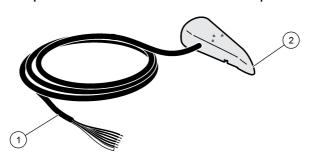

- Sensor totalmente submersível
- · Sensor de acúmulo de detritos
- Medição para velocidades extremamente baixas e fluxo reverso
- Operação em condições de fluxo livre, fluxo não livre e sobrecarga
- · Sensor substituível para campo
- Nenhuma calibração necessária
- Intensidade de sinal aumentada para aplicações de lubrificação
- · Medição de temperatura de fluxo

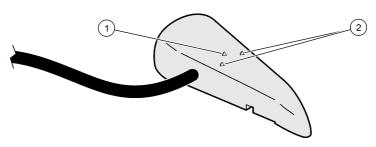
Figura 1 Visão geral do produto - Sensor Flo-Tote 3 com conector

1 Sensor Flo-Tote 3	5 Cordão de pescoço
2 Recipiente do dessecante	6 Clipe do mosquetão
3 Tubo de referência do ar	7 Cubo do dessecante
4 Cabo do sensor com conector	

Figura 2 Visão geral do produto - Sensor Flo-Tote 3 com fio desencapado

1 Cabo do sensor com fio desencapado	2 Sensor Flo-Tote 3
--------------------------------------	---------------------

Teoria de operação


O sensor de canal aberto Flo-Tote 3 mede diretamente a velocidade e a profundidade da água.

Medição da velocidade

O sensor utiliza a indução eletromagnética da Lei de Faraday para medir a velocidade da água. A Lei de Faraday diz: um condutor, movendo-se através de um campo magnético, produz uma tensão.

Como a água é um condutor, a água movendo-se através de um campo magnético produz uma tensão. A magnitude da tensão é diretamente proporcional à velocidade da água. O sensor de canal aberto gera um campo eletromagnético, criando uma tensão na água. Os eletrodos de duas velocidades, junto com o eletrodo de aterramento, medem essa tensão. Consulte Figura 3. Uma velocidade de água mais rápida produz uma tensão maior. A velocidade é determinada ao medir essa tensão de maneira precisa.

Figura 3 Eletrodos do sensor

Eletrodo de aterramento

2 Eletrodos de velocidade

Medição de profundidade

Um transdutor de pressão é usado para medir a profundidade da água. O transdutor é um dispositivo eletrônico que utiliza um diafragma fino para converter a pressão em um sinal eletrônico. O transdutor de profundidade encontra-se dentro do sensor. O canal cruzado (localizado na parte inferior do sensor) permite que a pressão da áqua alcance o transdutor e, ao mesmo tempo, protege o diafragma frágil contra danos.

Um tubo de ar, que passa através do comprimento do cabo do sensor até a caixa de junção do dessecante, permite que o transdutor anule a pressão atmosférica para medir a pressão real da água. O tubo de ar (chamado de referência da pressão atmosférica ou tubo APR) precisa ser protegido da água, que pode danificar o transdutor.

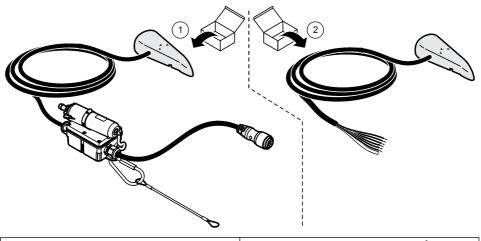
Cálculos de vazão

As medições de velocidade e profundidade são usadas com as dimensões do canal para calcular a taxa de vazão. A taxa de vazão é calculada a partir da equação de continuidade (1):

(1) Taxa de vazão = Velocidade média × Área

onde

Taxa de vazão = volume de líquido que passa pelo sensor por unidade de tempo (por exemplo, 200 galões por minuto)


Velocidade média = velocidade média do líquido, calculada com as medicões e algoritmos de velocidade do ponto

Área = área de corte transversal do líquido no canal calculada com as dimensões do canal e a medição de profundidade

Componentes do produto

Certifique-se de que todos os componentes foram recebidos. Consulte Figura 4. Se houver itens ausentes ou danificados, entre em contato imediatamente com o fabricante ou com um representante de vendas.

Figura 4 Componentes do produto

1 Sensor Flo-Tote 3 com conector

2 Sensor Flo-Tote 3 com fio desencapado³

Instalação

APERIGO

Perigo de explosão. O instrumento não está aprovado para ser instalado em localizações perigosas.

ACUIDADO

Vários perigos. Somente pessoal qualificado deve realizar as tarefas descritas nesta seção do manual.

AVISO

Normalmente, as instalações comuns do Flo-Tote 3 não recebem interferências eletromagnéticas. Mas, devido ao método de medição de velocidade usado na sonda AV, maquinário elétrico ou transmissores de rádio próximos da instalação podem causar erros de medição. Mantenha o comprimento dos cabos o mais curto possível para evitar interferências eletromagnéticas. Além disso, tenha cuidado ao direcionar ou juntar cabos para manter esse feito dentro do mínimo possível.

Itens para coletar

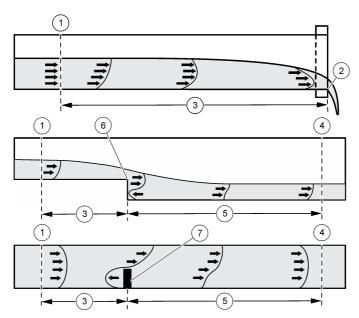
Colete os itens a seguir para instalar o sensor. Os itens a seguir são fornecidos pelo usuário.

- Material de instalação do sensor⁴
- Chave de soquete e da catraca
- Lacres

³ O fio desencapado é uma alternativa ao conector.

Consulte Material de instalação do sensor na página 12.

Fita elétrica para unir o cabo e o material de instalação (opcional)


Diretrizes de local de site

Para se obter a melhor precisão, instale o sensor onde o fluxo não é turbulento. O local ideal é em uma bomba ou canal reto longo. Embocaduras, quedas verticais, defletores, curvas ou junções fazem o perfil de velocidade ficar distorcido.

Onde houver embocaduras, quedas verticais, defletores, curvas ou junções, instale o sensor ascendente ou descendente, como mostrado em Figura 5-Figura 7. Para locais ascendentes, instale o sensor em uma distância de pelo menos cinco vezes o diâmetro da bomba ou o nível de fluido máximo. Para locais descendentes, instale o sensor em uma distância de pelo menos dez vezes o diâmetro da bomba ou o nível de fluido máximo.

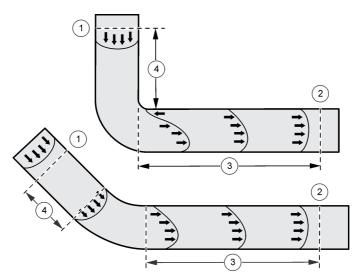

Se o local contiver uma junção e o fluxo em uma bomba for muito alto, instale o sensor na parede perto da bomba de fluxo inferior.

Figura 5 Local do sensor perto de uma embocadura, queda vertical ou defletor

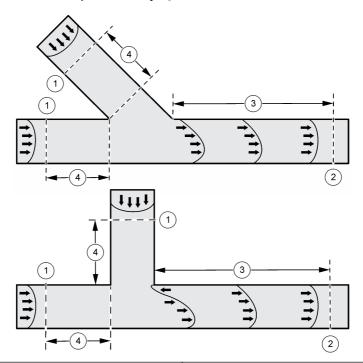
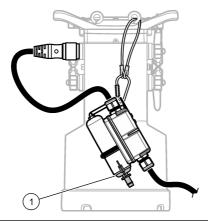

1 Local do sensor ascendente aceitável	5 Distância descendente: 10 × o diâmetro da bomba
2 Embocadura	6 Queda vertical
3 Distância ascendente: 5 × o nível máximo	7 Defletor
4 Local do sensor descendente aceitável	

Figura 6 Local do sensor perto de uma curva ou cotovelo

1 Local do sensor ascendente aceitável		3 Distância descendente: 10 × o diâmetro da bomba		
1	2 Local do sensor descendente aceitável	4 Distância ascendente: 5 × o diâmetro da bomba		

Figura 7 Local do sensor perto de uma junção


1 Local do sensor ascendente aceitável	3 Distância descendente: 10 × o diâmetro da bomba
2 Local do sensor descendente aceitável	4 Distância ascendente: 5 × o diâmetro da bomba

Instalação do cubo do dessecante (FL900)

Instale o cubo do dessecante no registrador de fluxo FL900 para fornecer um alívio de tensão ao cabo do sensor e ao conector. Consulte Figura 8.

Para obter o melhor desempenho, certifique-se de instalar o recipiente do dessecante na vertical, com o tampão apontado para baixo. Consulte Figura 8.

Figura 8 Instalação do cubo do dessecante

1 Tampão

Conectar a um registrador de fluxo

Conecte o cabo do sensor em um registrador de fluxo da série FL. Consulte a documentação do registrador de fluxo para obter as instruções.

Material de instalação do sensor

Encaixe o sensor no material de instalação. Depois, coloque o material de instalação em um tubo ou canal. Materiais de instalação diferentes estão disponíveis para a instalação do sensor em tubos de tamanhos e formatos diferentes. Consulte Peças e acessórios de reposição na página 28 para obter informações de colocação de pedidos. Consulte a documentação fornecida com o material de instalação para obter as instruções de instalação.

Opções do material de instalação:

- Banda em mola Banda de metal circular que permanece no lugar por ação da mola contra as paredes do tubo. Disponível para tubos de 6 a 19 polegadas de diâmetro.
- Banda em macaco tipo tesoura Banda de metal circular que permanece no lugar quando um macaco tipo tesoura é apertado. Disponível para tubos de 16 a 61 polegadas de diâmetro.
- Bandas parciais Banda de metal que cobre metade da parte inferior de um canal e permanece no lugar através da instalação na parede do canal.
- Suporte retangular do canal Placa de metal que permanece no lugar através de uma instalação no canal.

Operação

Para sensores conectados em um registrador de vazão FL900, conecte um computador com o software FSDATA Desktop no registrador de vazão para configurar, calibrar e coletar dados dos sensores. Consulte a documentação do FSDATA Desktop para configurar, calibrar e coletar dados do sensor.

Para sensores conectados a um registrador de vazão FL1500, consulte sua documentação para configurar, calibrar e coletar dados dos sensores. Como alternativa, conecte um computador com o software FSDATA Desktop no registrador de vazão para configurar, calibrar e coletar dados dos sensores. Consulte a documentação do FSDATA Desktop para configurar, calibrar e coletar dados do sensor.

Instale o software

Certifique-se de que a versão mais recente do software FSDATA Desktop esteja instalada no computador. Baixe o do software de http://www.hachflow.com. Clique em Support (Suporte) e, então, selecione Software Downloads>Hach FL Series Flow Logger (Downloads de Software>Registrador de Fluxo Série Hach FL).

Manutenção

ACUIDADO

Vários perigos. Somente pessoal qualificado deve realizar as tarefas descritas nesta seção do manual.

AVISO

Não desmonte o instrumento para manutenção Caso seja necessário limpar ou reparar componentes internos, entre em contato com o fabricante.

Limpe os eletrodos do sensor

AVISO

Não use uma lixa para limpar os eletrodos do sensor. A lixa pode danificar os eletrodos.

Consulte Solução de problemas na página 16 quando for necessário limpar os eletrodos do sensor

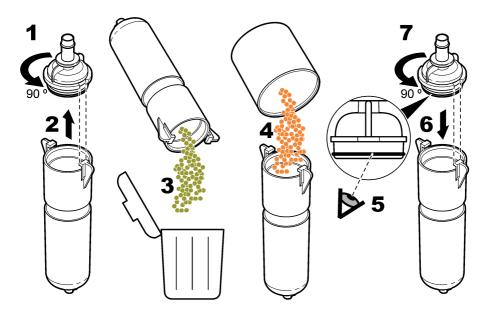
- 1. Coloque uma quantidade pequena de detergente em uma escova de cerdas macias.
- Limpe os eletrodos do sensor com uma escova de cerdas macias. Consulte Figura 3 na página 7 para identificar os eletrodos.
- 3. Lave os eletrodos do sensor com água limpa.

Substituir o dessecante

AVISO

Não opere o sensor sem as esferas do dessecante ou com esferas do dessecante verdes. Podem ocorrer danos permanentes ao sensor.

Substitua imediatamente o dessecante quando ele mudar para a cor verde. Consulte Figura 9.


Observação: Não é necessário remover o recipiente do dessecante do cubo para instalar o novo dessecante.

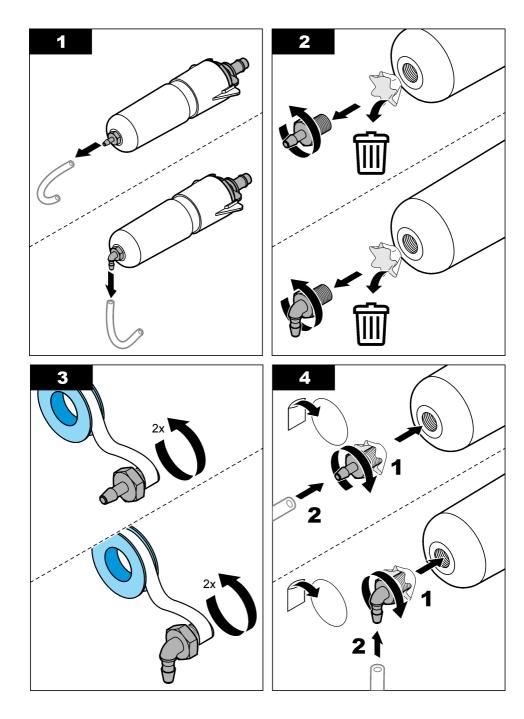
Na etapa 5 de Figura 9, certifique-se de que o anel de vedação (o-ring) esteja limpo e sem sujeira ou detritos. Examine o anel de vedação quanto a rachaduras, fendas ou sinais de danos. Substitua o anel de vedação caso ele tenha algum dano. Aplique graxa para secar ou em novos anéis de vedação para facilitar a instalação, obter uma vedação melhor e aumentar a vida útil do anel de vedação.

Para obter o melhor desempenho, certifique-se de instalar o recipiente do dessecante na vertical, com o tampão apontado para baixo. Consulte Instalação do cubo do dessecante (FL900) na página 11.

Observação: Quando as esferas começarem a ficar verde, é possível retardar o processo com aquecimento. Remova as esferas do cartucho e aqueça-as a 100-180 °C (212-350 °F) até ficarem laranja. Não aqueça o cartucho. Se as esferas não ficarem laranja, elas deverão ser substituídas com um novo dessecante.

Figura 9 Substituir o dessecante

Substituição da membrana hidrofóbica


Substitua a membrana hidrofóbica quando:

- Ocorrerem aumentos ou diminuições inesperados nas tendências de nível.
- os dados sobre o nível estiverem ausentes ou incorretos, mas os dados da velocidade forem válidos.
- · A membrana estiver torcida ou saturada com água ou graxa.

Consulte as etapas ilustradas a seguir para substituir a membrana. Na etapa 4, certifique-se do seguinte:

- O lado macio da membrana hidrofóbica está contra a superfície interna do recipiente do dessecante.
- A membrana hidrofóbica dobra para cima e entra totalmente na rosca até não ser mais vista.
- A membrana hidrofóbica gira com o bico quando o mesmo gira no recipiente do dessecante. Se a membrana não girar, ela está danificada. Inicie o procedimento novamente com uma nova membrana.

Para obter o melhor desempenho, certifique-se de instalar o recipiente do dessecante na vertical, com o tampão apontado para baixo. Consulte Instalação do cubo do dessecante (FL900) na página 11.

Solução de problemas

Ao ocorrer um problema, isole o problema no sensor, registrador ou cabo de interconexão.

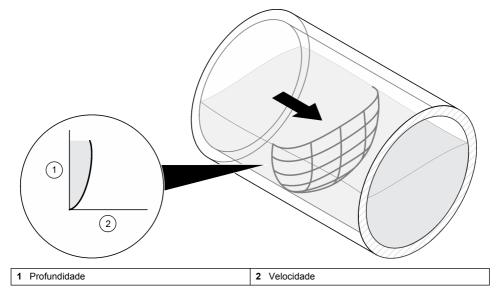
Problema	Causa possível	Solução	
Quedas repentinas na Os eletrodos de velocidade estão cobertos por detritos.		Limpar o sensor. Consulte Limpe os eletrodos do sensor na página 13.	
		Certifique-se de que o sensor foi instalado corretamente.	
Mensagem de erro de perda de condutividade Os eletrodos de velocidade estão secos.		Certifique-se de que o nível de água esteja acima do sensor. Se o nível de água estiver baixo, construa uma barragem de baixa vazão.	
	Os eletrodos de velocidade estão cobertos por detritos ou graxa.	Limpar o sensor. Consulte Limpe os eletrodos do sensor na página 13.	
Velocidade barulhenta	Pode haver um ruído elétrico no tubo.	Identifique e elimine a fonte da interferência (se possível).	
Medições de profundidade incorretas ou com desvio Água no tubo do APR.		Substitua o cartucho do dessecante (ou filtro do APR). Consulte Substituir o dessecante na página 13.	
		Se possível, remova o sensor e deixe-o secar.	
Medições de profundidade incorretas (travadas em zero ou em escala total)	O transdutor de profundidade interno pode estar danificado.	Entre em contato com o suporte técnico.	

Apêndice A: criação do perfil de velocidade

A ADVERTÊNCIA

Vários perigos. Somente pessoal qualificado deve realizar as tarefas descritas nesta seção do manual.

Leia as precauções quanto a espaços confinados antes de iniciar esse procedimento. Consulte Precauções em espaços confinados na página 5.


A criação de um perfil de velocidade para um local envolve a medição direta da velocidade da água em diversos pontos ao longo da seção transversal do tubo para determinar a velocidade média. O registrador de vazão usa as informações do perfil, junto com a velocidade e a profundidade detectadas e informadas pelo sensor de vazão, para calcular o coeficiente de calibração correto do local para a aplicação. Consulte Figura 10.

Observação: A criação de um perfil verifica ou aprimora a precisão. Porém, o coeficiente de calibração padrão de um local normalmente é adequado.

O sensor mede a velocidade da água na parte inferior do canal ou tubo (chamada de velocidade detectada). A velocidade média é diferente da velocidade detectada porque a água se move em velocidades diferentes em partes diferentes da seção transversal. O coeficiente de calibração correto do local permitirá que a velocidade média seia calculada de maneira precisa a partir da velocidade detectada em todas as profundidades.

Observação: Como o procedimento exato para a criação de um perfil de velocidade irá variar dependendo do tipo do medidor para criação de perfil de velocidade, as informações inclusas aqui são para fins gerais. Consulte o manual do usuário para obter informações sobre o medidor para criação do perfil de velocidade usado para informações específicas.

Figura 10 Perfil de velocidade típico

Seleção do local

Um local com o formato de perfil típico fornece os resultados mais precisos. A inspeção visual normalmente é suficiente para identificar problemas no local. Use as informações nessas diretrizes para ajudar a selecionar o melhor local.

Essas diretrizes se aplicam aos perfis do conduíte e do córrego.

- O canal deve ter o máximo possível de áreas retas. Se o comprimento da área reta for limitado, o comprimento a montante do perfil deve ter duas vezes o comprimento a jusante.
- O canal deve estar isento de perturbações de vazão. O local não deve ter juntas do tubo salientes, mudanças repentinas no diâmetro, vazões secundárias contribuintes, vazões secundárias de saída ou obstruções. Remova todas as pedras, sedimentos ou outros detritos da parte inferior do tubo.
- A vazão não deve ter redemoinhos visíveis, turbilhões, vórtices, vazão reversa ou zonas mortas.
- Não selecione áreas imediatamente a jusante de curvas acentuadas ou obstruções.
- Não selecione áreas com vazão convergente ou divergente (próximas de um canal) ou quedas verticais
- · Não selecione áreas imediatamente a jusante de comportas ou locais onde o canal entra em uma área de água parada.

Diretrizes do perfil

Para os melhores resultados possíveis:

- Meça o diâmetro horizontal e vertical do tubo. Se houver diferença, use a média para diâmetro interno do tubo.
- Certifique-se de que a vazão esteja simétrica.
- Meça a profundidade diversas vezes durante o procedimento.
- Examine o tubo em busca de pedras, sedimentos e outros detritos.

Meça a profundidade da vazão

Para criar um perfil de velocidade, meça a profundidade da vazão no tubo:

- 1. Meça o diâmetro interno do tubo.
- 2. Meça a distância da parte superior do tubo até a parte superior da água. Consulte Figura 11.
- 3. Subtraia essa distância de diâmetro interno do tubo. Essa é a profundidade da vazão.

Observação: A profundidade e as velocidades devem ser medidas no mesmo plano vertical. Consulte Figura 12.

Figura 11 Medição da profundidade da vazão

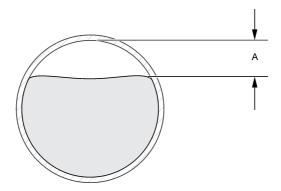
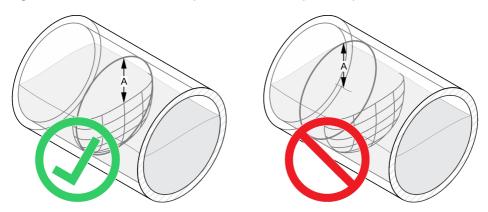



Figura 12 Profundidade da vazão e perfil de velocidade - plano simples

Cálculos do perfil de velocidade

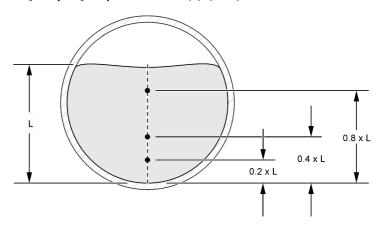
Existem quatro métodos para criar um perfil do local. O método escolhido depende das condições do local.

Medição pelo método 0,9 x Vmax

O método 0,9 x Vmax é o método mais simples. Meça a velocidade em pontos diferentes da seção transversal para determinar a velocidade máxima no tubo. A velocidade média é calculada multiplicando a velocidade máxima por 0,9. Esse método deve ser usado para:

- Vazões baixas vazões de menos de duas polegadas de profundidade.
- Vazões de mudança rápida uma vazão que muda mais de 10% em três minutos ou menos pode ser classificada como uma de mudança rápida.

Para criar o perfil da vazão:


- 1. Meça a velocidade em diversos pontos através de toda a vazão.
- 2. Identifique a velocidade mais rápida. Na maioria dos casos, ela se encontra no centro, logo abaixo da superfície.
- 3. Multiplique a velocidade mais rápida por 0,9.

Método 0,2, 0,4, 0,8

O método 0.2. 0.4. 0.8 é o mais comum para a criação de um perfil de vazão típico. A velocidade é medida em três pontos: 0,2, 0,4 e 0,8 vezes a profundidade total da vazão. A velocidade de cada ponto é inserida no medidor. Esse método deve ser usado para:

- Vazões típicas qualquer local que não tenha qualquer perturbação, obstrução, turbulência, etc. Consulte Seleção do local na página 17.
- Meça a profundidade da vazão. Consulte Meça a profundidade da vazão na página 18.
- 2. Calcule as posições de medição na linha central:
 - Posição 0.2 = 0.2 x profundidade da vazão
 - Posição 0.4 = 0.4 x profundidade da vazão
 - Posição 0,8 = 0,8 x profundidade da vazão
- 3. Meça as velocidades nas posições 0,2, 0,4 e 0,8. Consulte Figura 13.
- 4. Calcule a média das velocidades 0.2 e 0.8.
- 5. Calcule a média da velocidade 0,4 com a média 0,2 e 0,8 da etapa 4.

Figura 13 Meça as posições para o método 0,2, 0,4 e 0,8

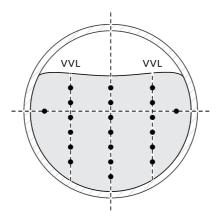
Método 0,4

O método 0,4 é uma versão simplificada do método 0,2, 0,4, 0,8. A velocidade é medida somente na posição 0,4. Use esse método para:

 Vazões baixas - locais livres de obstruções, etc., mas sem profundidade suficiente para medir a velocidade em três pontos.

Método 2D

O método 2D usa as velocidades da linha central, as linhas da velocidade vertical e os cantos da vazão. Use esse método para:

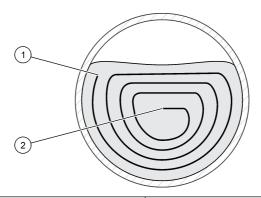

 Vazões assimétricas - locais que tenham velocidades com diferença de mais de 30% em qualquer lado do tubo (por exemplo, perto de uma dobra).

- Quedas verticais locais próximos de um escoamento ou com outro tipo de mudança na profundidade.
- Vazões irregulares qualquer local onde se acredite ter um perfil irregular ou incomum.

Para criar o perfil da vazão:

- 1. Encontre a linha central da vazão.
- 2. Encontre as linhas de velocidade vertical (V V L) na metade entre a linha central e as paredes laterais do tubo. Consulte Figura 14. Use a parte mais ampla da vazão.
- 3. Meça a velocidade em, no mínimo, 7 profundidades diferentes ao longo da linha central.
- **4.** Meça a velocidade ao longo da V V L em diferentes profundidades. A distância entre essas profundidades deve ser igual às da linha central.
- 5. Meca a velocidade nos cantos direito e esquerdo da vazão.
- 6. Examine os dados em busca de quaisquer valores atípicos. Um valor atípico ficará fora da região da curva de melhor ajuste se um gráfico tiver sido feito a partir do perfil de velocidade.
- Calcule a velocidade média (exceto valores atípicos) de todas as medições (exceto valores atípicos). Lembre-se de incluir as medições dos cantos.

Figura 14 Criação de perfil de velocidade para o método 2D


Método 2D alternativo

Um sensor de velocidade portátil pode ser usado para criar um perfil 2D. Mova o sensor em um padrão de redemoinho por toda a seção transversal. Consulte Figura 15. Ajuste o instrumento para calcular a média dessas medições de velocidade. Consulte o manual do usuário do sensor de velocidade portátil para obter instruções detalhas.

Procedimento comum (para o medidor de criação de perfil de velocidade Flo-Mate):

- 1. Ajuste o tempo de FPA dentro do número adequado de segundos.
- Coloque o sensor na posição inicial e aguarde alguns segundos.
- 3. Pressione <ON/C> e comece a mover o sensor.

Figura 15 Velocidade medida em um padrão de redemoinho

1 Posição de início

2 Posição de parada

Calibração automática Auto-Cal

Para locais com tubos de concreto diretos e circulares, uma calibração automática do local Auto-Cal pode ser usada no lugar da criação de perfil de velocidade. O sensor deve ser instalado no processo e deve estar online para realizar a calibração. Consulte a documentação do FSDATA Desktop para calibrar o sensor.

Apêndice B: cálculos de vazão

A ADVERTÊNCIA

Vários perigos. Somente pessoal qualificado deve realizar as tarefas descritas nesta seção do manual.

Leia as precauções quanto a espaços confinados antes de iniciar esse procedimento. Consulte Precauções em espaços confinados na página 5.

Para a maioria das aplicações, a vazão em um canal é calculada e registrada por um medidor de vazão.

Esse apêndice foi incluído para calcular a vazão manualmente ou para entender como a vazão é calculada.

Os cálculos de vazão são fornecidos para:

- Canais circulares
- Canais retangulares
- · Rios e córregos

Cálculo de vazão - canais circulares

Os seguintes valores são necessários antes da vazão poder ser calculada:

- A velocidade média em pés/s ()
- A profundidade da vazão em polegadas no momento de criação do perfil de velocidade (Meça a profundidade da vazão na página 18)
- O diâmetro interno do canal em polegadas
- 1. Calcule a profundidade para a proporção de diâmetro (L/D) onde:
 - L= a profundidade da vazão em polegadas no momento da criação do perfil

- · D = o diâmetro interno em polegadas
- 2. Encontre o multiplicador da unidade de vazão (K) de Tabela 1:
 - a. Na coluna esquerda, encontre a proporção L/D da etapa 1.
 - b. Mova para a direita (para a coluna de unidades desejada) para obter o multiplicador da unidade de vazão (K).

Observação: Tabela 1 é somente para conduítes circulares, medido em pés. O multiplicador foi derivado usando uma vazão de um pé por segundo em um conduíte de um pé de diâmetro como modelo.

3. Converta o diâmetro para pés quadrados:

 D^2 = (diâmetro do canal em polegadas ÷ 12) x (diâmetro do canal em polegadas ÷ 12)

4. Calcule a vazão:

Vazão = K x D² x velocidade média.

Exemplo: qual é a vazão em milhões de galões por dia (MGD) em um canal de 10 polegadas de diâmetro com uma profundidade de 6 polegadas? A velocidade média é 1,5 pés/s.

L/D = 6 polegadas ÷ 10 polegadas = 0,6 K = 0,3180

 $D^2 = (10 \text{ polegadas} \div 12)^2 = (0.833 \text{ pés})^2 = 0.694 \text{ pés}^2$

Vazão = $K \times D^2 \times V$ velocidade média = 0,3180 x 0,694 pés $^2 \times 1,5$ pés/s = 0,331 MGD

Tabela 1 Multiplicador da unidade de vazão

rabela i manipilicador da unidade de vazao						
L/D	MGD	GPM	CFS	СММ	CMD	LPM
0,01	0,0009	0,5966	0,0013	0,0023	3,2522	2,2585
0,02	0,0024	1,6824	0,0037	0,0063	9,1709	6,3687
0,03	0,0044	3,0814	0,0069	0,0117	16,7986	11,6644
0,04	0,0068	4,7296	0,0105	0,0179	25,7811	17,9036
0,05	0,0095	6,5894	0,0147	0,0249	35,919	24,9438
0,06	0,0124	8,6351	0,0192	0,0327	47,0701	32,6876
0,07	0,0156	10,8475	0,0242	0,0411	59,1295	41,0621
0,08	0,019	13,2113	0,0294	0,05	72,0148	50,0103
0,09	0,0226	15,7143	0,035	0,0595	85,6585	59,4851
0,10	0,0264	18,346	0,0409	0,0694	100,0039	69,4471
0,11	0,0304	21,0975	0,047	0,0799	115,0022	79,8627
0,12	0,0345	23,9609	0,0534	0,0907	130,6108	90,702
0,13	0,0388	26,9294	0,06	0,1019	146,7919	101,9388
0,14	0,0432	29,9967	0,0668	0,1135	163,5116	113,5497
0,15	0,0477	33,1571	0,0739	0,1255	180,7393	125,5134
0,16	0,0524	36,4056	0,0811	0,1378	198,4467	137,8102
0,17	0,0572	39,7374	0,0885	0,1504	216,6081	150,4223
0,18	0,0621	43,148	0,0961	0,1633	235,1995	163,333
0,19	0,0672	46,6334	0,1039	0,1765	254,1985	176,5267
0,20	0,0723	50,1898	0,1118	0,19	273,5844	189,9892
0,21	0,0775	53,8135	0,1199	0,2037	293,3373	203,7064
0,22	0,0828	57,5012	0,1281	0,2177	313,4387	217,6657

Tabela 1 Multiplicador da unidade de vazão (continuação)

		•		`	,	
L/D	MGD	GPM	CFS	СММ	CMD	LPM
0,23	0,0882	61,2496	0,1365	0,2319	333,871	231,8548
0,24	0,0937	65,0555	0,1449	0,2463	354,6172	246,2619
0,25	0,0992	68,9161	0,1535	0,2609	375,6613	260,8759
0,26	0,1049	72,8286	0,1623	0,2757	396,988	275,6861
0,27	0,1106	76,7901	0,1711	0,2907	418,5825	290,9823
0,28	0,1163	80,7982	0,18	0,3059	440,4305	305,8545
0,29	0,1222	84,8503	0,189	0,3212	462,5182	321,1932
0,30	0,1281	88,9439	0,1982	0,3367	484,8325	336,3892
0,31	0,134	93,0767	0,2074	0,3523	507,3605	352,3337
0,32	0,14	97,2464	0,2167	0,3681	530,0894	368,1176
0,33	0,1461	101,4507	0,226	0,384	553,0071	384,0327
0,34	0,1522	105,6875	0,2355	0,4001	576,1017	400,0706
0,35	0,1583	109,9546	0,245	0,4162	599,3618	416,2234
0,36	0,1645	114,25	0,2545	0,4325	622,7757	432,4831
0,37	0,1707	118,5715	0,2642	0,4488	646,3325	448,8419
0,38	0,177	122,9172	0,2739	0,4653	670,0208	465,2922
0,39	0,1833	127,2851	0,2836	0,4818	693,8301	481,8265
0,40	0,1896	131,6733	0,2934	0,4984	717,7501	498,4375
0,41	0,196	136,0797	0,3032	0,5151	741,7607	515,1178
0,42	0,2023	140,5026	0,313	0,5319	765,8788	531,8603
0,43	0,2087	144,94	0,3229	0,5487	790,0673	548,6578
0,44	0,2151	149,3902	0,3328	0,5655	814,325	565,5034
0,45	0,2215	153,8512	0,3428	0,5824	838,642	582,3902
0,46	0,228	158,3212	0,3527	0,5993	863,008	599,3111
0,47	0,2344	162,7985	0,3627	0,6163	887,4133	616,2592
0,48	0,2409	167,2811	0,3727	0,6332	911,848	633,2277
0,49	0,2473	171,7673	0,3827	0,6502	936,3024	650,21
0,50	0,2538	176,2553	0,3927	0,6672	960,7664	667,1989
0,51	0,2603	180,7433	0,4027	0,6842	985,2306	684,1879
0,52	0,2667	185,2295	0,4127	0,7012	1009,685	701,1701
0,53	0,2732	189,7121	0,4227	0,7181	1043,12	718,1385
0,54	0,2796	194,1894	0,4327	0,7351	1058,525	735,0869
0,55	0,2861	198,6594	0,4426	0,752	1082,891	752,0076
0,56	0,2925	203,1204	0,4526	0,7689	1107,108	768,8945
0,57	0,2989	207,5706	0,4635	0,7857	1131,466	785,7401
		•	•			

Tabela 1 Multiplicador da unidade de vazão (continuação)

L/D	MGD	GPM	CFS	СММ	CMD	LPM
0,58	0,3053	212,008	0,4724	0,8025	1155,654	802,5377
0,59	0,3117	216,4309	0,4822	0,8193	1179,763	819,2801
0,60	0,318	220,8374	0,492	0,836	1203,783	835,9605
0,61	0,3243	225,2255	0,5018	0,8526	1227,703	852,5715
0,62	0,3306	229,5934	0,5115	0,8691	1251,512	869,1057
0,63	0,3369	233,9392	0,5212	0,8856	1275,201	885,556
0,64	0,3431	238,2607	0,5308	0,9019	1298,758	901,9149
0,65	0,3493	242,556	0,5404	0,9182	1322,171	918,1745
0,66	0,3554	246,8232	0,5499	0,9343	1345,432	934,3275
0,67	0,3615	251,06	0,5594	0,9504	1368,526	950,3654
0,68	0,3676	255,2643	0,5687	0,9663	1391,444	966,2805
0,69	0,3736	259,434	0,578	0,9821	1414,173	982,0645
0,70	0,3795	263,5668	0,5872	0,9977	1436,701	997,709
0,71	0,3854	267,6604	0,5963	1,0132	1459,015	1013,205
0,72	0,3913	271,7125	0,6054	1,0285	1481,103	1028,544
0,73	0,397	275,7206	0,6143	1,0437	1502,951	1043,716
0,74	0,4027	279,6822	0,6231	1,0579	1524,546	1058,712
0,75	0,4084	283,5946	0,6319	1,0735	1545,872	1073,522
0,76	0,4139	287,4553	0,6405	1,0881	1566,917	1088,137
0,77	0,4194	291,2612	0,6489	1,1025	1587,663	1102,544
0,78	0,4248	295,0096	0,6573	1,1167	1608,095	1116,733
0,79	0,4301	298,6972	0,6655	1,1307	1628,197	1130,692
0,80	0,4353	302,321	0,6736	1,1444	1647,95	1144,409
0,81	0,4405	305,8774	0,6815	1,1579	1667,336	1157,872
0,82	0,4455	309,3629	0,6893	1,1711	1686,335	1171,066
0,83	0,4505	312,7735	0,6969	1,184	1704,926	1183,976
0,84	0,4552	316,1053	0,7043	1,1966	1723,088	1196,589
0,85	0,4599	319,3538	0,7115	1,2089	1740,795	1208,886
0,86	0,4644	322,5143	0,7186	1,2208	1758,023	1220,849
0,87	0,4688	325,5815	0,7254	1,2325	1774,743	1232,46
0,88	0,4731	328,55	0,732	1,2437	1790,924	1243,697
0,89	0,4772	331,4135	0,7384	1,2545	1806,533	1254,536
0,90	0,4812	334,165	0,7445	1,265	1821,531	1264,952
0,91	0,485	336,7967	0,7504	1,2749	1835,876	1274,914
0,92	0,4886	339,2997	0,756	1,2844	1849,52	1284,389

Tabela 1 Multiplicador da unidade de vazão (continuação)

L/D	MGD	GPM	CFS	СММ	CMD	LPM
0,93	0,492	341,6636	0,7612	1,2933	1862,406	1293,337
0,94	0,4952	343,8759	0,7662	1,3017	1874,465	1301,712
0,95	0,4981	345,9216	0,7707	1,3095	1885,616	1309,456
0,96	0,5008	347,7815	0,7749	1,3165	1895,754	1316,496
0,97	0,5032	349,4297	0,7785	1,3277	1904,739	1322,735
0,98	0,5052	350,8287	0,7816	1,328	1912,365	1328,031
0,99	0,5068	351,9145	0,7841	1,3321	1918,284	1332,141
1,00	0,5076	352,5112	0,7854	1,3344	1921,536	1334,4

Cálculo da vazão - canais retangulares

A vazão em canais retangulares é calculada da seguinte forma:

1. Encontre a velocidade média com o método 0,2, 0,4, 0,8. Consulte Método 0,2, 0,4, 0,8 na página 19.

Observação: Para larguras de canal com 1,8 m (6 pés) ou mais, use o método 0,2, 0,6, 0,8 conforme descrito para rios e córregos. Consulte Cálculo da vazão - rios e córregos na página 25. As unidades de velocidade devem estar em pés/s.

- 2. Calcule a área de corte transversal em pés quadrados (pés²):
 - Área = (profundidade de vazão em polegadas ÷ 12) x (largura do canal em polegadas ÷ 12)
- Calcule a vazão:

Vazão = velocidade média x área de corte transversal

O resultado será uma taxa de vazão em pés³/s (CFS). Para converter para outras unidades de vazão, consulte Converta as unidades de vazão na página 27.

Exemplo: qual a vazão em milhões de galões por dia (MGD) em um canal retangular com 24 polegadas de largura e uma vazão com 10 polegadas de profundidade?

Velocidade média:

Velocidade em 0,2 x profundidade (2 polegadas) = 1,5 pés/s

Velocidade em 0,4 x profundidade (4 polegadas) = 1,7 pés/s

Velocidade em 0,8 x profundidade (8 polegadas) = 1,8 pés/s

$$(1.5 + 1.8) \div 2 = 1.65 \text{ pés/s}$$

Velocidade média = (1,65 + 1,7) ÷ 2 = 1,67 pés/s

Área de corte transversal:

Converta polegadas para pés: 10 polegadas ÷ 12 = 0,83 pés

Área = 0.83 pés x 2 pés = 1.66 pés²

Vazão:

Vazão = $1,67 \text{ pés}^2/\text{s} \times 166 \text{ pés} = 2,77 \text{ pés}^3/\text{s}$

De Converta as unidades de vazão na página 27, 2,77 pés³/s x 0,64632 = 1,7903 MGD

Cálculo da vazão - rios e córregos

- 1. Encontre a profundidade de cada segmento do canal:
 - a. Divida a largura do canal em segmentos de comprimento igual (d). Consulte Figura 16.
 - **b.** Localize a linha central de cada segmento (½ x d).

c. Meça a profundidade de cada segmento na linha central do segmento.

Observação: As posições 0,2, 0,6 e 0,8 para rios e córregos são medidas na superfície. Todas as medições de profundidade e velocidade devem ser feitas no mesmo nível.

Observação: Segmentos menores fornecerão resultados melhores. Se a diferença na velocidade média entre dois segmentos adjacentes for maior que 10%, diminua os segmentos.

- 2. Use um perfil de velocidade para calcular a vazão para cada segmento:
 - a. Calcule as posições de velocidade 0,2, 0,6, 0,8 na linha central de cada segmento.
 - **b.** Meça a velocidade nas posições 0,2, 0,6 e 0,8.
 - c. Calcule a média das velocidades 0,2 e 0,8.
 - d. Calcule a média da velocidade 0,6 e a média das velocidades 0,2 e 0,8. Essa é a velocidade média.
 - e. Calcule a área de corte transversal de cada segmento. Consulte Figura 17.
 - f. Calcule a vazão de cada segmento:
 - Vazão = área do segmento x velocidade média
- Adicione as vazões de todos os segmentos. A vazão total para o rio ou córrego é a soma das vazões do segmento.

Figura 16 Segmentos para um rio ou córrego

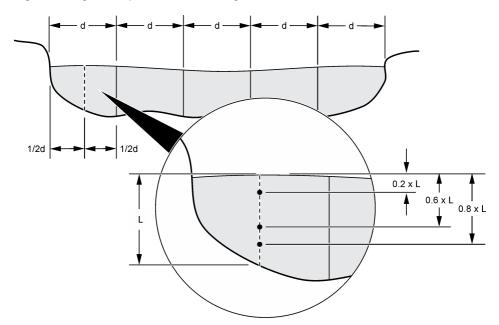
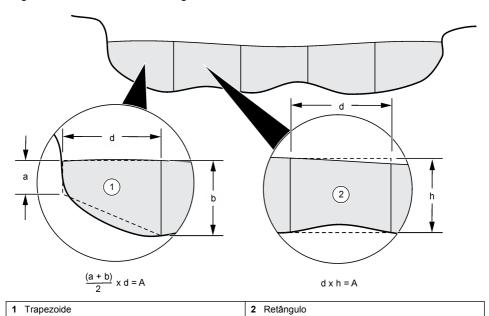



Figura 17 Cálculos da área do segmento

Converta as unidades de vazão

- 1. Encontre a unidade original na coluna esquerda de Tabela 2.
- 2. Encontre a nova unidade na parte superior da coluna de Tabela 2.
- 3. Encontre a célula da tabela onde as unidades se cruzam. Esse é o fator de conversão.
- 4. Multiplique o valor original pelo fator de conversão para obter o valor na nova unidade. Exemplo: converta 20 pés³/s (CFS) para milhões de galões por dia (MGD). O fator de conversão de CFS para MGD é 0,64632.

 $20 \text{ pés}^3/\text{s} \times 0,64632 = 12,9 \text{ MGD}$

Tabela 2 Fatores de conversão da unidade de vazão

Unidade original	CFS	MGD	GPM	CMD	СММ
CFS	1	0,64632	448,831	2446,576	1,69901
MGD	1,54723	1	694,44	3785,412	2,62876
GPM	0,002228	0,00144	1	5,45099	0,0037854
CMD	0,000408	0,0002642	0,18345	1	0,0006944
СММ	0,5885	0,380408	264,172	1440	1

MGD = milhões de galões por dia

GPM = galões por minuto

CFS = pés cúbicos por segundo

CMM = metros cúbicos por minuto

CMD = metros cúbicos por dia

Peças e acessórios de reposição

A ADVERTÊNCIA

Risco de lesão corporal. O uso de peças não aprovadas pode causar lesões pessoais, danos ao instrumento ou mau funcionamento do equipamento. As peças de substituição nesta seção foram aprovadas pelo fabricante.

Observação: Os códigos dos produtos podem variar para algumas regiões. Entre em contato com o distribuidor apropriado ou consulte o website da empresa para obter informações de contato.

Peças de reposição

Descrição	Nº de item
Dessecantes, a granel, cânister de 1,5 libra	8755500
Recipiente do dessecante	8542000
Membrana hidrofóbica	3390
Anel de vedação, recipiente do dessecante, 1,176 DI x 0,070 DE	5252

Acessórios

Descrição	Nº de item
Banda em tesoura para Ø 15.24 cm (6 pol.) tubo	800008105
Banda em tesoura para Ø 20.32 cm (8 pol.) tubo	800008106
Banda em tesoura para Ø 25.40 cm (10 pol.) tubo	800008107
Banda em tesoura para Ø 30.48 cm (12 pol.) tubo	800008108
Banda em tesoura para Ø 38,10 cm (15 pol.) tubo	800008109
Banda em tesoura para Ø 45,72 cm (18 pol.) tubo	800008110
Banda em macaco tipo tesoura, 10 pol. de largura x 18 pol. de base	800008101
Banda em macaco tipo tesoura, 10 pol. de largura x 36 pol. de base	800008102
Banda em macaco tipo tesoura, 10 pol. de largura x 18 pol. base com 10 pol. conjuntos de extensão	800008103
Banda em macaco tipo tesoura	800008104
Banda em mola, Q-Stick ⁵	750000201
Bandas parciais	800010101
Suporte de canal retangular	75012-xx

⁵ Ferramenta para instalação de uma banda em mola sem entrada em espaço confinado.

HACH COMPANY World Headquarters

P.O. Box 389, Loveland, CO 80539-0389 U.S.A. Tel. (970) 669-3050 (800) 368-2723 (U.S.A. only) U.S.A. – orders@hach.com International – international@hach.com flowtechsupport@hach.com www.hachflow.com www.hachflow.com

[©] Hach Company/Hach Lange GmbH, 2017. Todos os direitos reservados.