
## **Chlorination in Drinking Water**

## **CHLORINE BREAKPOINT CURVE**



#### **Chlorine Added**

### Monochloramine, Free Chlorine, $Cl_2:N < 5:1$ (Monochloramine predominates, Free Ammonia > 0)

- ► Minimises formation of chlorinated organics, specifically TTHM\*.
- ► Less effective disinfection than free chlorine.
- ► Requires longer contact time and/or greater concentration than free chlorine.
- More stable than free chlorine (long distribution systems).
- ► Generally does not produce DBPs\*\* (this issue is still being studied).
- Must reduce free ammonia to reduce risk of nitrification issues.

### Dichloramine & Trichloramine, $Cl_2:N > 5:1$ (Free Ammonia = 0)

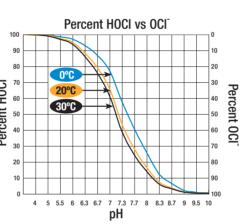
► Likely taste and odour issues.

### Free Chlorine, $Cl_2:N > 9:1$ (Total Ammonia = 0)

- Most effective disinfection, least taste and odour occurs with free residual chlorine.
- ► Free chlorine may lead to formation of DBP\*\*.

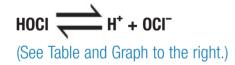
NOTE: Shape of the curve is dependent upon amount of ammonia and other chlorine demand substances in the water, temperature, pH, and contact time.

\* TTHM = total trihalomethanes \*\* DBP = disinfection byproducts


## **Key Reactions**

1. When chlorine is combined with water, forms hypochlorous (HOCI) and hydrochloric (HCI) acids:

$$CI_2 + H_20$$
  $\longrightarrow$  HOCI + H<sup>+</sup> + CI<sup>-</sup>


2. Reaction is reversible. Above pH 4, reaction is to the right.

## Effect of pH on Chlorine Species



# • Monochloramine – $NH_2CI$ $NH_3 + HOCI \longrightarrow NH_2CI + H_2O$

3. HOCI dissociates to the hydrogen ion\*\*\* and hypochlorite ion (OCI<sup>-</sup>) varying with temperature and pH:



- 4. Chlorine (HOCI and OCI<sup>-</sup>) reacts with ammonia to form chloramines, commonly referred to as "combined chlorine."
- 5. The predominate species are monochloramine and dichloramine. A small fraction is trichloramine or nitrogen trichloride.
  - \*\*\* Hydronium ion,  $H_3O^+$

| Proportions of HOCI and OCI <sup>-</sup> at varying temperature and pH levels |       |       |       |       |       |       |  |
|-------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|--|
| рН                                                                            | HOCI  | OCI   | HOCI  | OCI   | HOCI  | OCI   |  |
|                                                                               | 0 °C  | 0 °C  | 20 °C | 20 °C | 30 °C | 30 °C |  |
| 4                                                                             | 100   | 0     | 100   | 0     | 100   | 0     |  |
| 5                                                                             | 99.85 | 0.15  | 99.4  | 0.6   | 99.68 | 0.32  |  |
| 6                                                                             | 98.53 | 1.47  | 97.45 | 2.55  | 96.92 | 3.08  |  |
| 7                                                                             | 87.04 | 12.96 | 79.29 | 20.71 | 75.9  | 24.1  |  |
| 8                                                                             | 40.18 | 59.82 | 27.69 | 72.31 | 23.95 | 76.05 |  |
| 9                                                                             | 6.29  | 93.71 | 3.69  | 96.31 | 3.05  | 96.95 |  |
| 10                                                                            | 0.67  | 99.33 | 0.38  | 99.62 | 0.31  | 99.69 |  |

 $NH_2CI + HOCI$  NHCI<sub>2</sub> +  $H_2O$ 

• Dichloramine - NHCI

- Trichloramine (Nitrogen Trichloride) NCl<sub>3</sub>
   NHCl<sub>2</sub> + HOCI NCl<sub>3</sub> + H<sub>2</sub>O
- Definition of unreacted (free) ammonia:

NH<sub>3</sub> Free ammonia gas dissolved in water and/or

 $NH_4^+$  The ammonium ion

## Nitrification Process

#### **Formation of Nitrate**

Conversion of free ammonia to nitrite.

$$NH_3 + 0_2$$
  $\longrightarrow$   $NO_2^- + 3H^+ + 2e^-$ 

Ammonia converts to Nitrite Nitrosomonas, Nitrosococcus, and Nitrosospira

Conversion of nitrite to nitrate.

$$NO_2^- + H_2O$$
  $\longrightarrow$   $NO_3^- + 2H^+ + 2e^-$ 

Nitrite converts to Nitrate Nitrobacter, Nitrospina, Nitrococcus, and Nitrospira



www.hach.com

## Signs and Consequence of Nitrification

### Early Indicators

Control strategies can be applied.

- 🔺 Free Ammonia
- Monochloramine
   Nitrite (ivet detected)
- Nitrite (just detectable)
   ATP
- pH
  DO
  Alkalinity
  Temperature

40 to 50 °C

Nitrification

Slows and Ceases

26 to 39 °C

Most Favorable

for Nitrification

#### Late Indicators

0°0

Nitrification

A significant problem exists and remedial action must be implemented – extensive flushing, cleaning of storage tanks, free chlorine "burnout."

Favorable for

 Nitrite
 Nitrate
 Turbidity
 Customer observations

**Effect of Temperature on Nitrification** 

Nitrification

## **Control Strategies**

| Areas of Control                                   | Action |
|----------------------------------------------------|--------|
| рН                                                 |        |
| Free Ammonia                                       |        |
| Water Age (flushing, decrease storage level, etc.) |        |
| Monochloramine Residual                            |        |
| ТОС                                                |        |
| Improve Tank Mixing                                |        |

Use this panel to identify the areas of correction for your distribution system or storage tank when you begin to experience the signs of nitrification.  $\blacktriangle$  = Increase  $\checkmark$  = Decrease

Ceases Slows Nitrification

DOC140.52.10041.Nov23