

### **Application Note 6.03**

# Trace-level dissolved nitrogen (DN2) measurement in ultrapure water and other liquids

- Direct, simple, continuous measurement down to 100 ppb of  $\mathsf{DN}_2$
- Solid-state sensor minimizes drift, and reduces typical maintenance requirement to minutes per year
- Needs only 50 ml/min sample flow (or less) for reduced waste
- No interference from CO<sub>2</sub>
- Optional add-on dissolved oxygen measurement capability

# **Application Description**

The semiconductor industry is finding an increased need to measure dissolved nitrogen at low concentrations in ultrapure water and other liquids used in wafer fabrication. At present, concentrations of dissolved nitrogen are generally of 1 ppm or higher, but planned improvements in semiconductor devices may require reduction in concentrations to levels well below 1 ppm.

The concern is that  $DN_2$ , if present in sufficient concentration, may come out of solution and form small gas bubbles that can be detrimental—or ruinous—to fabricated devices.

In order to satisfy industry requirements for sub-ppm  $\rm N_2$  measurements, Orbisphere has introduced a new  $\rm DN_2$  measurement system with the following special features:

- Patented *spiral* flow chamber insert to maximize linear flow velocity with low flow volume
- Silicone disc to improve sample access to sensor membrane, thereby further reducing flow dependence

The measurement is made by means of a small, solid-state, thermal conductivity sensor that is isolated from the liquid or gas sample by a thin, gas-permeable membrane.

# **Optional O<sub>2</sub> Measurement**

A two-channel version of the trace level dissolved nitrogen measurement system includes  $O_2$  measurement. This costeffective solution makes a highly accurate correction for the presence of  $O_2$  in trace-level  $DN_2$  measurements, and processes the information on a single indicating instrument. The  $O_2$  sensor uses a simple air-calibration method and requires minimal maintenance.

(See also Application Note 6.02, "Dissolved oxygen measurement in ultrapure water for semiconductor manufacturing.")

## **Installation Recommendations**

 $DN_2$  measurement instruments are available in a transportable or panel mount configuration. Measurements are made off-line through a flow chamber (or two, if  $O_2$  is also measured), which is

### World Headquarters: Loveland, Colorado USA | hach.com

 United States
 800-227-4224
 fax: 970-669-2932
 email: orders@hach.com

 Outside United States
 970-669-3050
 fax: 970-461-3939
 email: intl@hach.com

©Hach Company, 2024. All rights reserved.

In the interest of improving and updating its equipment, Hach Company reserves the right to alter specifications to equipment at any time.

connected to the sample and drain with ¼" or 6-mm tubing. An external temperature sensor is also attached to the sample tubing close to the flow chamber(s). The user may wish to supply flow measurement device on the output side of the flow chamber. Detailed instructions are included with each system.

#### **Flow Dependence**

The flow dependence for nitrogen measurement is as follows:





## **Recommended System Components**

| Model               | Description                                                                                 |
|---------------------|---------------------------------------------------------------------------------------------|
| 511E00/<br>P1C1P000 | Orbisphere 511 Controller N₂ (TC), Panel Mount, 100-240 VAC, 0/4-20mA, Profibus, Ext. Press |
| 31590TC             | TC Sensor N2, CO2 Purge , ext temp sensor, 20<br>bar                                        |
| 32559               | External temperature sensor, off-line use with<br>¼" T-piece                                |
| 32001.111***        | Flow chamber, stainless steel (316), ¼" fittings,<br>Viton o-rings                          |
| 32505.03**          | Sensor cable, length 3 meters (lengths to 500<br>meters available)                          |

\*Without oxygen measurement or correction — to add oxygen measurement and correction, order two of each item marked with two asterisks (\*\*) above, and substitute or add the following:

| Model             | Description                                                                                  |
|-------------------|----------------------------------------------------------------------------------------------|
| 3610/520          | Two-channel $N_2$ and $O_2$ analyzer, with alarms, analog outputs, and RS-232 serial outputs |
| 31120.11<br>(add) | Oxygen sensor                                                                                |