
 1

 Application Note 114

Excel/OPC VBA Macro

Introduction
The purpose of this application note is to describe by example how one can use the
OPC Foundation's OPC Automation 2.0 Interface (OPCDAAuto.DLL) and Visual
Basic for Applications to retrieve data from an OPC server. A general understanding
of OPC, Microsoft Visual Basic, Microsoft Excel, and Windows is assumed.

Microsoft Excel 97/2K and its included VBA were used to develop the described
macro which communicates using the OPC Automation 2.0 Interface with the Hach
ModIO Explorer Demo OPC Server. The software principals' outlined in this
application note can be applied to communicate with any OPC Server using Visual
Basic or Visual Basic for Applications and the OPC Automation DLL,
OPCDAAuto.DLL.

System Requirements

• A Pentium class PC with Microsoft Excel 97 or 2000.
• Hach ModIO Explorer Demo software or Hach ModIO Explorer Version 2.0

software and the demo configuration file.
• The Excel file OPCExcel.XLS
• OPCDAAuto.DLL Version 2.0.02.
• COMDLG32.OCX Version 6.084.18.
• Internet Explorer 4.01 minimum
• Windows 98 with DCOM or Windows NT4.0 SP6, or Windows 2000

Sources
Refer to the Data Access Automation Interface Standard for detailed information on
the OPC Automation Interface. The Data Access Automation Interface Standard
Version 2.02 can be obtained from the OPC Foundation by ordering their CD (free)
from their web site:

http://www.opcfoundation.org/

The Excel Macro, OPCExcel.xls with COMDLG32.OCX, can be downloaded from
the Hach Company AquaTrend web site as OPCExcel.exe, a self-extracting, self-
installing zip file:

http://www.aquatrend.com/Downloads/Software/OPCExcel.exe

The Hach ModIO Explorer Demo software can be downloaded from the Hach
Company AquaTrend web site:

 2

http://www.aquatrend.com/Downloads/Software/ModIO Explorer Demo Install.exe

Installing and registering files
After downloading the OPCExcel.exe file from the AquaTrend web site, double click
on the file in Windows Explorer and follow the instructions. The install program will
install the OPCExcel.xls file in the folder C:\PROGRAM FILES\OPCExcelVBEx\.
The install program will also install and register the CM Dialog ActiveX Control,
COMDLG32.OCX, in your System32 folder. A shortcut to the OPCExcel.xls file will
be placed in your start menu i.e. Start|Programs|OPCExcelVBEx.

Installing the Hach ModIO Explorer Demo will install and register the
OPCDAAuto.DLL on your system and insure that you have a suitable version
installed of Internet Explorer and DCOM.

The ModIO Explorer Demo

Note: If you already have the ModIO Explorer Version 2.0 software installed
on your computer, please refer to Appendix A for instructions.

Warning: If you have a version of the ModIO Explorer prior to 2.0, do not
install the ModIO Explorer Demo software. Select a different PC to install
this demo on.

Install the Hach Mod-IO Explorer Demo by double clicking on the
ModIO Explorer Demo Install.exe file in Windows Explorer, and follow the
installation instructions.

Start the Mod-IO Explorer (OPC Server) by clicking
Start|Programs|Hach|Mod-IO Explorer.

The demo opens a configuration file that simulates 8, 1720D turbidimeters. The
sensor signals either continually ramp, or are random depending on the sensor.

Figure 1: ModIO Explorer

 3

Verify that the Mod-IO Explorer Demo is functioning properly by expanding the tree
in the left hand pane and selecting Sensor3-1720D.
Select the Spyglass Icon on the Toolbar or Poll|Start Polling from the Mod-IO
Explorer menu bar. The value of the Tag "Turbidity" in the right hand pane should
ramp from 0.4 to 0.5 and its Quality should be "Good".

Figure 2: ModIO Explore Polling

Select File|Exit from the Mod-IO Explorer Demo menu bar to close the OPC server.

OPCExcel
Before opening the OPCExcel.xls Excel demo file, verify that your security settings
for Macros will allow you to run an Excel Macro. For Excel 2000, open Excel and
select Tools|Macro|Security from the menu bar.

Figure 3: Excel Security

 4

On the Security Level tab, select Medium for the security level and click OK.

Open the OPCExcel.xls file by selecting
Start|Programs|OPCExcelVBEx|OPCExcel.xls or open it using File|Open from
the Microsoft Excel menu bar, and open the file at
C:\PROGRAM FILES\OPCExcelVBEx\OPCExcel.xls.

Figure 3: OPCExcel.xls

The Excel workbook application uses a macro to communicate with the Mod-IO
Explorer OPC server. This application can log turbidity data at a user-defined rate
(sample interval in seconds). The number of turbidimeters can be 1 to 8 and the
number of data records can be 1 to 65,000.

The application will log the requested turbidity data until either the Data Logger is
stopped or the requested number of data records has been met. While data is being
recorded, the Data Logger will display the data in tabular form on the Turbidity Data
sheet and in graphical form on the Chart sheet. The turbidimeters that you want to
view graphically are selected during the setup of the Data Logger application.

After the requested number of records has been met, the Data Logger will
automatically calculate percentile statistics and report the second of two consecutive
readings over 1 NTU for each turbidmeter. The reported statistics are displayed in
the automatically created Report Sheet. The file is saved in a user-selected folder
and has the file format of day-month-year (08-Nov-00.xls). Multiple files saved on
the same day have an additional number (0 to 24) appended to the file name (08-
Nov-00-0.xls).

To run the application, click on the Run Data Logger button in the OPC1720D tool
bar.

 5

Figure 4: Tool Bar

Note: If the tool bar is not fully visible, maximize the Excel Application.

Next, click on the Log File Folder button.

Figure 5: Splash Screen

Do not change the file name in the Save As dialog box. Select a folder to save your
data log file too and click on the Save button.

Figure 6: Save As Dialog

 6

Verify that your path for the saved files is OK. If OK, click Yes.

Figure 7: File Save Prompt

The Data Log Properties dialog allows one to choose the number of turbidimeters
that they are acquiring data from. The range is from 1 to 8 for this macro example.
You can also select the sample interval in whole number seconds and the maximum
number of records you want to log. Since the maximum sample rate for a 1720D
turbidimeter is 3 seconds, it is not practical to sample faster. Typical real world
sample rates are in the range of 1 to 30 minutes (60 to 1800 seconds). The
maximum number of records you can record is 65,000.

Figure 8: Data Log Properties

Click OK after making your selections (for quick demonstration purposes, leave
selections as shown).

The Chart Properties dialog allows one to select which turbidimeters will show in the
trend chart. You can select up to 8, but the chart will get "busy" if more than 4 are
selected. You can also select the number of data points to be plotted on the trend
chart.

 7

Figure 9: Chart Properties

Clicking OK in the Chart Properties dialog will start the data acquisition process.
The process first fires the ModIO Explorer Demo application and its Icon will appear
in the Task bar.

Figure 10: Task Bar Icon

You can view the data as it is acquired on the Turbidity Data sheet.

Figure 11: Turbidity Data View

You can also view the trend chart by clicking on the View Chart ... button in the
OPC1720D tool bar.

Figure 12: Tool Bar

 8

Figure 13: Chart View

 To return to the Turbidity Data sheet, click on the While Logging View Data button
on the Chart Sheet.

After all the data has been logged to the Turbidity Data spreadsheet, the Macro will
calculate some statistics and create a Report sheet. Next it will save the file at the
location you chose. While the macro is doing this, a Please Wait information box will
be displayed if you are running Excel 2000. Excel 97 does not allow Modeless
forms so you won’t see the Please Wait … form, but the Status Bar of Excel will
indicate that it is calculating and saving.

Figure 14: Calculating Statistics

The macro closes the original read only Workbook, OPCExcel.xls and the ModIO
Explorer Demo OPC server. The saved Workbook is displayed.

 9

Figure 15: Saved Workbook

You can view the chart by clicking on the chart tab at he bottom of the Excel window.

Figure 16: Chart

 10

You can use the Chart Tool Bar at the top of the Excel Window to modify the chart.

The report can be viewed by clicking on the Report tab at the bottom of the Excel
Window.

Figure 17: Report

The Report displays the 50th through 99th percentile calculations and the 0.30 NTU
percent rank for each of the turbidimeters. The calculations are based on standard
Excel statistical functions. The second of any two consecutive readings greater than
or equal to 1 NTU are also displayed in the report.

As with any software, many features could be added to this application to enhance
its value in performing a specific function. Some enhancements that come to mind
are:

• Periodic data backup while logging to prevent loss of data should the system
have an upset during logging.

• The manual creation of an additional report from the data on the Turbidity
Data sheet, thus allowing a report to be based on edited data (for example,
deletion of Backwash data).

• The ability to easily change the time range that the data is displayed over on

the trend chart.

These fun exercises are left to the readers of the application note.

The Macro
To view the Macro, press Alt + F11 to open the Visual Basic for Applications
development environment.

 11

Figure 18: Visual Basic IDE

Expand the folders in the Project window.

Figure 19: Project Folders

The Project window shows that this Excel Workbook, OPCExcel.xls, is made up of
the following:

 12

Microsoft Excel Objects
• Sheet1 (Chart)

This object contains one command button that allows you to return to the
Turbidity Data sheet while you are logging data.

• Sheet2 (Turbidity Data)
There is no additional code associated with this object.

Forms
• The five custom forms that are used with this macro are listed.

Modules
• GetFolder

This module contains methods (functions) to browse for a folder to store
the logged data too.

• OPC1720DModule
This module contains subroutines and functions that display the interface
dialogs (Forms), acquire the configuration data, format the worksheets, log
the data to the worksheet, calculate the statistics, generate the report and
trend chart, and save the workbook to your selected folder. Key
subroutines to review in this module are the AquireData and StartTimer.
The StartTimer subroutine uses the Excel OnTime method to create the
time delay between logged data records. The AquireData routine is
recursively called via the StartTimer routine. A detailed discussion of
OPC1720DModule module and the associated Forms is beyond the scope
of this application note. The author hopes that the comments and format
of the module will be self-explanatory.

• OPCClientModule
This module is the heart of the OPCExcel.xls macro example. All OPC
"creations" and "calls" are made in this module. The subroutines and
function that make up this module will be discussed in detail.

• ToolBar
The ToolBar module houses the code for the buttons on the OPC1720D
tool bar. The RunDataLogger button starts the OPC1720D routine in the
OPC1720Module. The PauseDataLogger button pauses the logging
process via a modal dialog box (message box) by setting a flag read in the
OPC1720DModule. The dialog box must be cleared before logging will
continue. The ViewChart button selects the Chart sheet for viewing and
the StopDataLogger stops the logging process and saves the logged data,
both do this by setting a flag.

OPCClientModule
The OPCClientModule consists of the following subroutines that are called by the
OPC1720DModule:

• ConnectOPC
This routine is responsible for creating the OPC client connection to the OPC
server (ModIO Explorer Demo in this example).

• DisconnectOPC
This routine is responsible for disconnecting the OPC client (the Excel Macro)
from the OPC server and assuring that memory is cleared.

 13

• IsOPCConnected
This function returns a Boolean value depending on whether the OPC client
connection to the server is made or not. This is done indirectly by testing to
see if a ConnectedServerName exists.

• GetData
This routine performs a synchronous read of the OPC tag values requested
via the call GetData(nNumberTurbs), nNumberTurbs = number of
turbidimeters. When periodic reads are required as with a data logger, the
synchronous read method is preferred because it waits until the read is
completed before continuing with the VBA code.

The OPC Data Access Automation DLL (OPCDAAuto.DLL) is used by the
OPCClientModule to connect to the OPC server, read tags, and disconnect from the
server. For detailed information on this DLL, its methods and properties refer to the
Data Access Automation Interface Standard referenced in this document.

A reference to the OPCAAuto.DLL must be made for the macro. In the VBA
development environment, select Tools | References on the Menu Bar and add OPC
Automation 2.0 to the reference list.

 14

The structure of an OPC Server object can be viewed as follows:

OPC Server Object

OPC Groups Collection
OPC Group Object(s)

OPC Item Collection
OPC Item Object(s)

Note: A collection is a set of same data type objects. OPC Item Object(s) are
the tags we will be reading.

For a discussion of collection objects read The Visual Basic Collection Object
at URL:

http://msdn.microsoft.com/library/devprods/vs6/vbasic/vbcon98/vbconthevisualbasiccollectionobject.htm

Connecting to the OPC Server
A connection must be made to the OPC server before communication with the
server can be consummated.

After declaring the objects and variables required for the OPCClientModule module,
the connection process begins with creation of a new OPC Server Object.

Set MyOPCServer = New OPCServer

Because we want to conncect to a specific OPC Server, the server must be defined.

ConnectedServerName = "Hach.ModIO.Demo"

Note: This OPC Server name was registered on the PC when the server
software was installed.

The Connect method of the OPC Server Object is used to connect the server.

MyOPCServer.Connect (ConnectedServerName)

Each OPC Server has a specific interface for its Collection of Groups. To get the
interface use:

Set MyServerGroup = MyOPCServer.OPCGroups

Next we activate the Group.

MyServerGroup.DefaultGroupIsActive = True

The interface allows us to set a deadband by assigning an integer from 0 to 100 for
the deadband. The integer is the percent of fullscale deadband.

 15

MyServerGroup.DefaultGroupDeadband = 0

Now we add a Group to our Group Collection. You can use any Group name you
want.

MyGroupName = "MyDataGroup"

Set MyOPCGroup = MyServerGroup.Add(MyGroupName)

Next initialize the update rate for the group. The update rate is a long integer value
representing the millisecond group update rate.

MyOPCGroup.UpdateRate = 1000

We now define arrays of OPCItemIDs and ClientHandles using a For-Next loop.
The OPC tags we want to read (see the ModIO Explorer Demo) have a structure:

ModIO1.Sensor1-1720D.Turbidity
ModIO1.Sensor2-1720D.Turbidity

ModIO1.Sensor8-1720D.Turbidity

Assigning the array:

For i = 1 To lItemCount
sMyOPCItemIDs(i) = "ModIO1.Sensor" & (i) & "-1720D.Turbidity"

 lClientHandles(i) = i ' Sets a reference pointer number for this point
Next i

We get the item collection from the current OPC Group and set the collection to
active.

Set MyOPCItemCollection = MyOPCGroup.OPCItems

MyOPCItemCollection.DefaultIsActive = True

Validation is recommended via the Validate method to ensure we haven't defined
and set a non-existent tag.

MyOPCItemCollection.Validate lItemCount, sMyOPCItemIDs, lItemServerErrors

We then test the returned array of Item Server Errors for any reported errors.

For i = 1 To lItemCount
 If lItemServerErrors(i) <> 0 Then
 MsgBox "This Tag is not a valid OPC Item" & " """ & sMyOPCItemIDs(i) & _

 16

 """", vbExclamation, "ConnectOPC"
 bTagError = True
 End If
 If bTagError Then
 ' Clear Memory Resources and End Program
 Set MyOPCItemCollection = Nothing
 ' Remove the group from the server
 MyServerGroup.Remove (MyGroupName)
 ' Release the Group system resources used
 Set MyServerGroup = Nothing
 Set MyOPCGroup = Nothing

 ' Disconnect from the OPC Server
 MyOPCServer.Disconnect
 ' Release the OPC Server object system resources
 Set MyOPCServer = Nothing
 ' End Program
 End
 End If

 Next i

The validation test loop contains code to disconnect the OPC Server and clear
memory if an error is detected.

If we have no errors, the AddItems method is used to create OPC Item Objects and
add them to our OPC Item Collection.

Note: lClientHandles are passed here, but not used in the GetData routine.

MyOPCItemCollection.AddItems lItemCount, sMyOPCItemIDs, _
 lClientHandles, lItemServerHandles, lItemServerErrors

This completes the connection to the OPC Server.

Getting the OPC Tag Data
Once we have connected to the OPC Server we can use the GetData routine to read
the tag values. This routine fills a string array (ValString()) with the OPC tag values.
If the OPC Quality of the tag is not good, it places the string "Bad" in the array. The
same holds true if an OPC Error is returned and the string "Error" is placed in the
array. The GetData(nNumTags as Integer) routine is passed an integer value equal
to the number of turbidimeters to be read. The SyncRead method is used to read
OPC data from the server.

MyOPCGroup.SyncRead OPCCache, lItemCount, lItemServerHandles(), _
 Values(), Errors(), Qualities

Next we test for Bad Quality and Errors.

For li = 1 To lItemCount
 If Qualities(li) <> &HC0 Then

 17

 Values(li) = "Bad"
 End If
 If Errors(li) <> 0 Then
 Values(li) = "Error"
 End If
 ValString(li) = Values(li)
Next li

If no errors or bad quality is detected the ValString() array will contain our requested
turbidity readings. Since ValString() is a Public Global String Array Object, the
OPC1720DModule routines can have access to the data.

Disconnecting the OPC Server
The DisconnectOPC routine provides a clean shutdown of the OPC connection. It
removes the items and groups and their associated collections from the OPC Server
and then disconnects from the server.

To disconnect we first create an array of Item Server Handles. These are the items
we whish to remove. ReDim is used to set the size of the array to be equal to our
number of turbidimeters.

Dim RemovelItemServerHandles() As Long
ReDim RemovelItemServerHandles(lItemCount) As Long

We also create an array of Item Server Errors and since this array is established in
the OPC Server, we do not need to dimension its size.

Dim RemovelItemServerErrors() As Long

We then get the handles for the valid items.

For i = 1 To lItemCount
 ' A none zero ItemServerHandle is valid
 If lItemServerHandles(i) <> 0 Then
 RemovelItemServerHandles(lTempCount) = lItemServerHandles(i)
 lTempCount = lTempCount + 1
 End If
Next i

The Remove method is used to remove the items.

MyOPCItemCollection.Remove lTempCount, RemovelItemServerHandles, _
 RemovelItemServerErrors

Next clear the memory of the collection.

Set MyOPCItemCollection = Nothing

Remove the Group from the server.

MyServerGroup.Remove (MyGroupName)

 18

Release the Group system resources.

Set MyServerGroup = Nothing
Set MyOPCGroup = Nothing

Disconnect the OPC Server.

MyOPCServer.Disconnect

Release the OPC Server object system resources.

Set MyOPCServer = Nothing

On exit of this routine we use the VB keyword "End" to reset all module level
variables, stop code execution, destroy all objects, free memory, and invalidate
object references held by other routines. This assures that if there are no other
connections from other programs to the OPC Server, the server will shut down.

Key Items That Define the OPC Server and Desired Tag
To communicate with an OPC Server you need to define the Server Name. In the
case of this example:

ConnectedServerName = "Hach.ModIO.1"

The Server Name is “Hach.ModIO.1”. This Server Name is registered in the system
registry when the OPC Server is installed.

The specific OPC tag also needs to be defined. In this example a For – Next loop
was used to iterate through a series of tag definitions:

sMyOPCItemIDs(i) = "ModIO 1-01.Sensor" & (i) & "-1720D.Turbidity"

The basic tag for sensor 1 being:

ModIO 1-01.Sensor1-1720D.Turbidity

To connect to other OPC Servers you will need to refer to the target Server
documentation to obtain the Server Name and the structure of the specific tags you
are interested in. There are several “Browser” ActiveX controls on the market now
that you could incorporate in your VBA interface. Browser controls would allow you
to dynamically set your Servers and tags that you want to poll. A search of the
Internet should provide you with a list of available OPC ActiveX Browser controls.

 19

Appendix A

If the ModIO Explorer Version 2.0 is Already Installed

Warning: If you have a version of the ModIO Explorer prior to 2.0, do not
install the ModIO Explorer Demo software. Select a different PC to install
this demo on.

If you already have the functional ModIO Explorer OPC server software version 2.0
installed you do not need to install the ModIO Explore Demo software. You can
download a demo configuration file from:

http://www.aquatrend.com/Downloads/Software/MIOConfig.osf

You will need to move or rename your current ModIO Explorer configuration file. Via
Windows Explorer, go to C:\PROGRAM FILES\HACH\OPC\ and rename your
current MIOConfig.osf file to OldMIOConfig.osf. Place the downloaded
configuration file in the C:\PROGRAM FILES\HACH\OPC\ folder. You can delete
the demo configuration file when you are finished with the demo and rename your
old configuration file back to MIOConfig.osf to restore your previous configuration.

Removing the OPCExcelVBEx Demo
You can remove the demo by clicking the Add-Remove Programs Icon on the
Control panel and selecting OPCExcelVBEx to remove.

Reference:

http://www.opcfoundation.org/

http://www.aquatrend.com/

http://msdn.microsoft.com/library/devprods/vs6/vbasic/vbcon98/vbconthevisualbasiccollectionobject.htm

Data Access Automation Interface Standard Version 2.02 February 4, 1999, OPC
Foundation

For more information, visit our AquaTrend Technical Information site at:

http://www.aquatrend.com/

© Hach Company Process and Turbidity Business Unit 2001. All rights reserved. Rev 2001-05-09.

