Optimising Your DAF Process

Ę

Process Management for Dissolved Air Flotation Systems

Be Right[™]

Maintaining your DAF system is priority #1, right? Wrong.

Be Right

НАСН

DAF Elements that Require Attention & Potential Problems:

F

Solids loading rate
 Hydraulic loading rate
 Regular testing
 Probe/Analyser maintenance
 Chemical usage

Specific Operational Challenges

Influent Variability

pH Control

Temperature Fluctuations

Accuracy of Online Measurements

НАСН

Specific Operational Questions

- What to measure and why?
- Where to measure it?
- Is a shift or daily grab sample good enough?
 Hint: It is not
- Is my system running as designed?
- Is my instrument giving me correct readings?
- What do I do with the data?
- Do chemical and/or power savings matter?
 Hint: Absolutely

Ę

Typical DAF System Process Operation

Overloaded system

Lack of true understanding of DAF process conditions

Ongoing reliance on individual operator knowledge/experience

Process Operation is Not Process Optimisation

Hard Street

Be Right"

Determining DAF Efficiency – The Manual Approach

F

Decreasing effluent turbidity

Sludge cake accumulating in back 1/3 of DAF

Thick Sludge Cake

Low turbidity

Determining DAF Efficiency – The Manual Approach

F

Minimal change in effluent turbidity

No sludge cake

High turbidity

UNHEALTHY

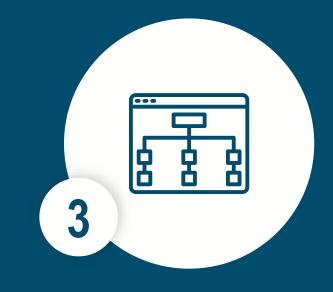
Thin Sludge Cake

High turbidity

We Can Help

Be Right[™]

How Can We Help?


F

Rugged online instrumentation for industrial processes

Real-time monitoring

Automated process control

Rugged Instrumentation

Be Right[™]

Rugged Instrumentation

Total Suspended Solids (TSS) / Turbidity Monitoring

Solitax sc Sensors

TSS sc Sensors

pH Monitoring

Digital Differential pH & ORP Sensors

Organics (TOC) Monitoring

BioTector B7000i Online TOC Analyser

НАСН

Be Right[™]

TOC ANALYZER

Getting the Job Done in the Dirtiest Environments

F

Real-Time Monitoring

2

НАСН

Real-Time Monitoring

24/7 Process Visibility Instrument Health Monitoring Resource Savings

- Chemicals
- Labour

Reduce downstream treatment costs

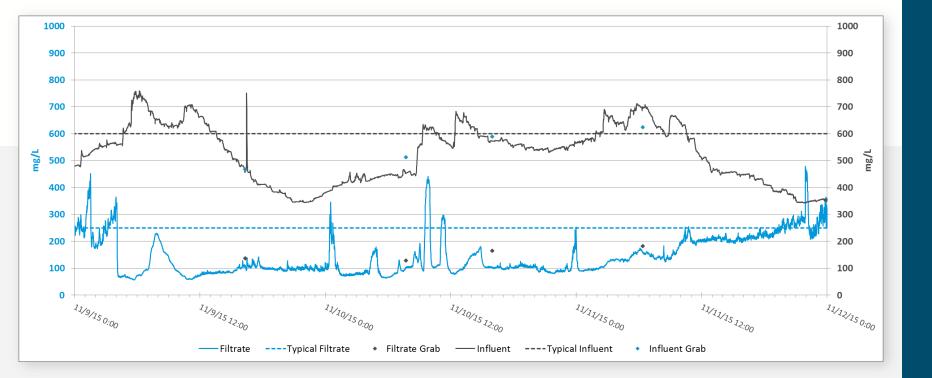
Identify product loss

Universal Controller

F

Standard Features

- Highly configurable
- Up To 8 Sensors
- Plug And Play Functionality
- C1D2 Certification
- NEMA 4x/Ip66
- 4 Relays
- Up To 12 mA Outputs
- Up To 12 mA Inputs
- SD Card For Data log And Configuration
- Networking
- Allows Up To 32 Devices Per Network


Communication Options

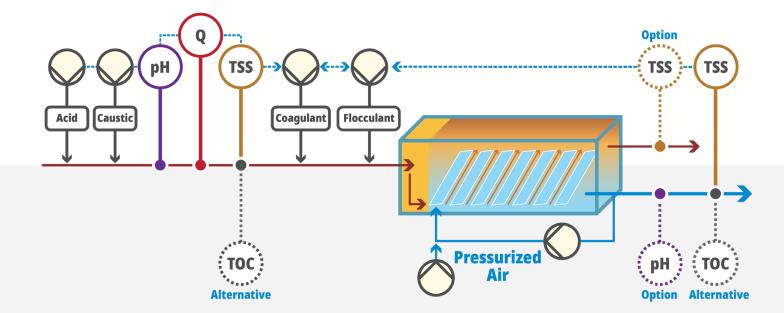
- Modbus Rs232/Rs485
- Modbus TCP/IP
- Profibus Dp
- Hart 7.2

Be Right[™]

Knowing the Process is a Good Start, But...

Automated Process Management

3


Be Right"

- 1. Collect real-time data
- 2. Calculate dynamic set points
- 3. Treatment adjusted chemical feeds or aeration
- 4. Manual and automated modes available

RTC-DAF System Overview

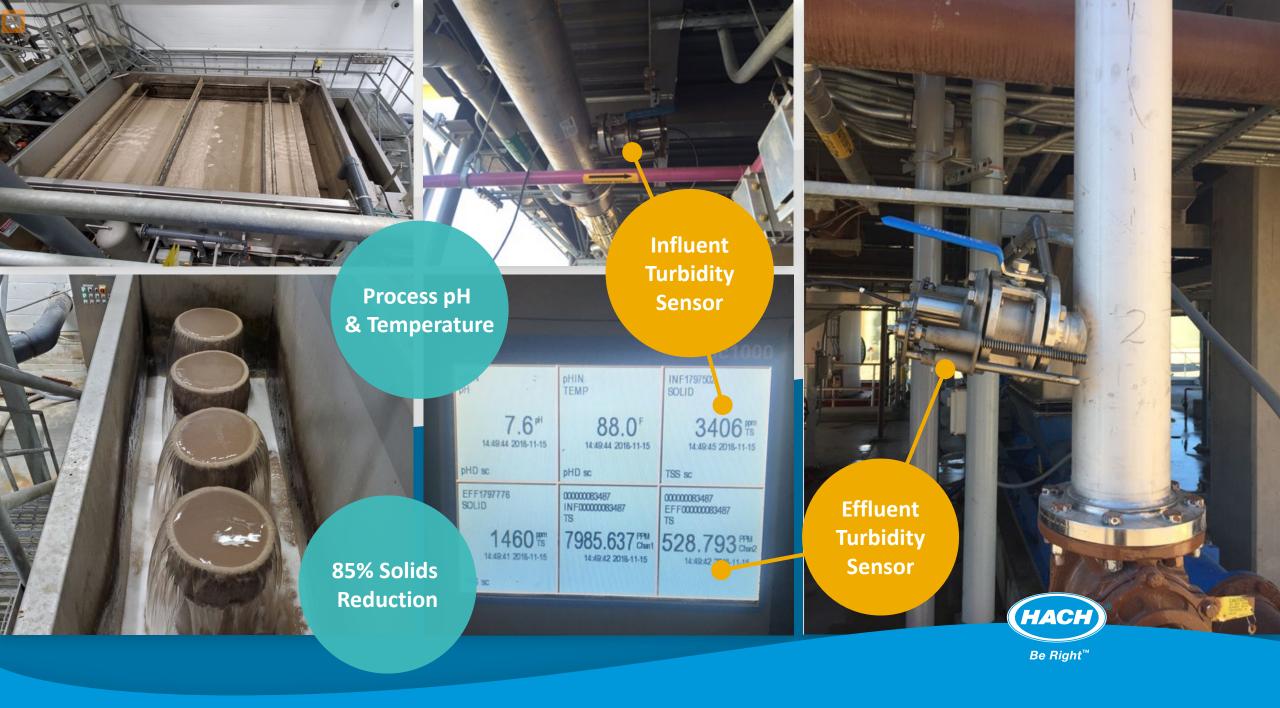
RTC DAF Parameters	Monitor	Manage
pH, Influent	Y	Y
pH, Effluent (optional)	Y	Y
NTU (TSS), Influent	Y	Y
NTU (TSS), Effluent	Y	Υ
NTU (TSS), Float	Y	Y
Flow	Υ	

RTC-DAF Input and Output Options

Inputs		
Influent Flow	Standard	
Effluent Turbidity	Standard	
Effluent pH	Standard	
Influent pH	Optional	
Influent Turbidity	Optional	
Coagulant Flow Rate	Optional	
Anionic Flocculant Flow Rate	Optional	
Cationic Flocculant Flow Rate	Optional	
Pre-DAF Acid Flow Rate	Optional	
Pre-DAF Base Flow Rate	Optional	
Post-DAF Acid Flow Rate	Optional	
Post-DAF Base Flow Rate	Optional	
5 Open Parameters	Optional	

Outputs		
Coagulant Flow Rate Setpoint	Standard	
Anionic Flocculant Flow Rate Setpoint	Standard	
Cationic Flocculant Flow Rate Setpoint	Optional	
Pre-DAF Acid Flow Rate Setpoint	Optional	
Pre-DAF Base Flow Rate Setpoint	Optional	
Post-DAF Acid Flow Rate Setpoint	Optional	
Post-DAF Base Flow Rate Setpoint	Optional	

RTC-DAF User Defined / Adjustable Settings

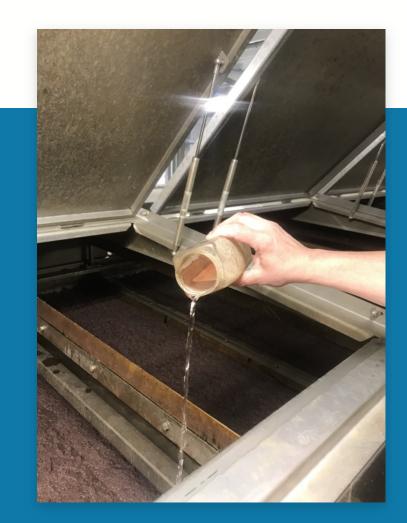

- Effluent Turbidity or TSS Setpoint (NTU or mg/L)
- Coagulant PPM dose

Ţ

- Anionic Flocculant PPM dose
- Cationic Flocculant PPM dose
- Effluent Turbidity or TSS PID values
- Coagulant Specific Gravity
- Anionic Flocculant Specific Gravity
- Cationic Flocculant Specific Gravity

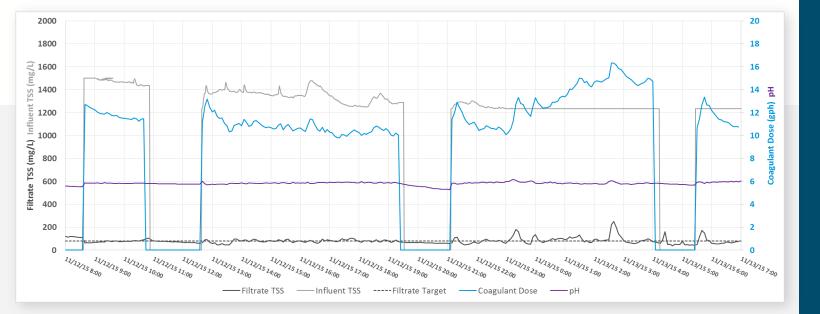
- Pre-DAF pH target value and range
- Pre-DAF pH PID values
- Post-DAF pH target value and range
- Post-DAF pH target value and range
- Minimum and Maximum Limits (flow setpoints, pump ranges, PPM or lb/ton, etc)
- Warning and Alarm limits for all measurements

The Benefits of Automated DAF Process Management

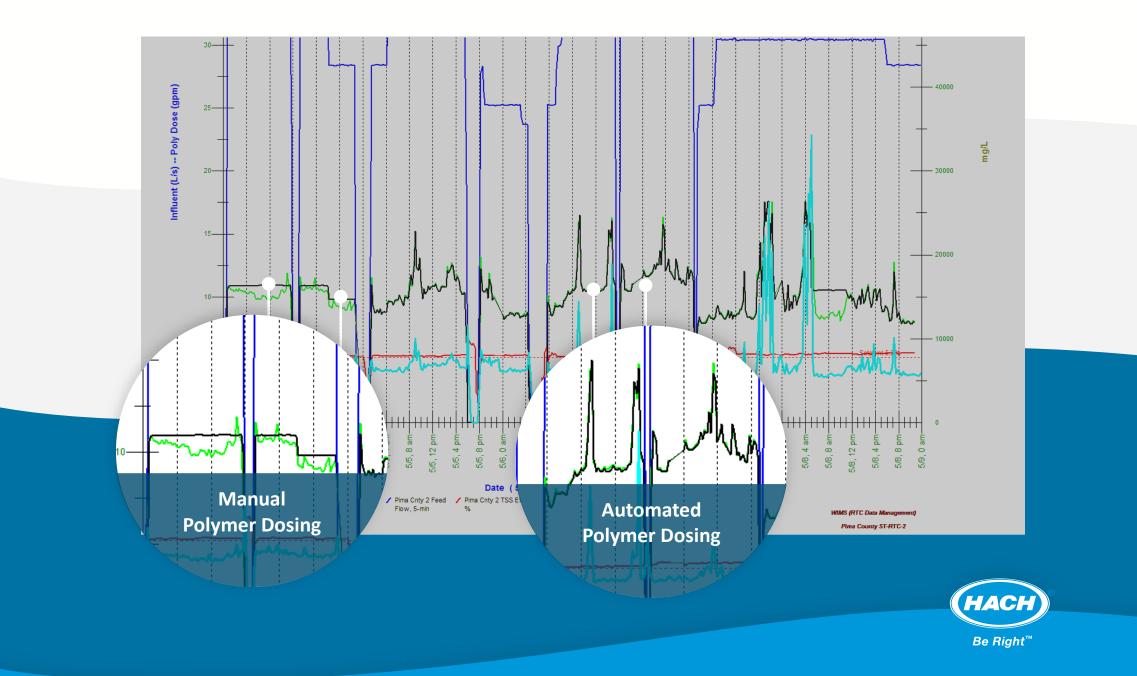


НАСН

Benefits


F

- Automated chemical dosing
 - Eliminate manual adjustments
- Reduce operator interaction
- Optimise both solids and filtrate quality
- Consistent & cleaner effluent concentration
 - Reduced discharge costs
- Critical visibility into the process
- Chemical savings
- Save time
- Consistent compliance and reduced fees



RTC-DAF in Action: Example of Real Benefits

Your process might still be highly variable, but the desired outcome is consistently met regardless of variation.

Performance Curve Dose v. % Recovery 35 100 Optimal 98 Operation 30 96 Normal 94 Operation lb/ton or %TS 25 92 90 24 lb/ton 20 88 86 15 84 82 10 80 2 3 5 6 1 Cake -Recovery -Dose, lb/ton Courtesy of Steve Walker, Carollo Engineering "Polymer Optimization through for Centrifuge Dewatering," 2011

Polymer Performance

There is an **OPTIMAL** dose ratio.

Adding chemical beyond the optimal point is wasting both chemical and budget.

MORE POLYMER ≠ BETTER RECOVERY

A Proven Approach from the Industry Leader

Dissolved Oxygen Control Ammonia Removal Total Nitrogen Removal Chemical Phosphorus Removal Sludge Retention Time **RAS Control** Sludge Thickening Sludge Dewatering DAF Coagulant/Polymer Control Chlorination / Dechlorination

Instrumentation + Software = Less Uncertainty & More Efficiency

One More Benefit? Hach Support

Yearly Service Partnership

- 1. A dedicated Hach[®] support team available to consult
- 2. Hach technicians providing guidance specific to your plant and application
- 3. Monthly reports to review your plant's performance
- 4. Reduced risk of unexpected downtime with service/maintenance recommendations

How to Get Started Typical Process Stages

F

In-Depth Project Planning Best practice to include 3rd party partners (Engineers, Energy Consultants, etc) Proposal

Pricing

Technical Recommendations Proposal Approval

Installation

Commissioning

Ongoing Support & Optimisation

Let's Go.

Be Right[™]